- ConvE——二维卷积知识图谱横空出世
时光诺言
机器学习—图神经网络知识图谱人工智能python卷积神经网络
《Convolutional2DKnowledgeGraphEmbeddings》论文理解+代码复现本论文理解不再翻译原文,只写上我对于论文原生态的理解,应该会比较详细,请读者放心。一.作者为什么要提出ConvE?传统的R-GCN和DistMult的参数量过大,并且模型深度不够深,只能处理较小的知识图谱,所以作者将CNN引入到图神经网络中。二.一维卷积与二维卷积的对比2.1一维卷积当a,b特征简单
- 时序动作定位|使用 ‘注意力机制’ 的弱监督时序动作定位顶会论文理解笔记(Weakly-Supervised Temporal Action Localization)
六个核桃Lu
视频动作定位深度学习人工智能神经网络机器学习计算机视觉
目录WeaklySupervisedActionLocalizationbySparseTemporalPoolingNetwork(CVPR2018)W-TALC:Weakly-supervisedTemporalActivityLocalizationandClassification(ECCV2018)
- 论文理解—— Disentangle-based Continual Graph Representation Learning
qq_26919935
网络表示学习图表示学习知识图谱持续学习
EMNLP2020Disentangle-basedContinualGraphRepresentationLearning链接:https://arxiv.org/abs/2010.02565研究背景:多关系数据表示真实世界中实体和实体之间的关系,其中的节点表示实体,边代表实体之间的关系,比如常见的知识图谱和信息网络等。利用图表示学习方法对多关系图建模一直是学术界和业界关注的热点。图表示学习目的
- Backbone:深层聚合网络:Deep Layer Aggregation(DLA)
AIRV_Gao
论文笔记backbone.js深度学习卷积神经网络
Backbone:DeepLayerAggregation(深层聚合网络,DLA)论文网址:https://arxiv.org/abs/1707.06484论文代码(pytorch):https://github.com/ucbdrive/dla参考博客:DeepLayerAggregation----------论文理解0.摘要DLA是一种融合深层网络的backbone结构。通过更深层次的融合可
- 【论文理解】Spatial Contrastive Learning for Few-Shot Classification
辣椒油li
少样本学习深度学习神经网络少样本学习
内容概览前言一、空间对比学习(SpatialContrastiveLearning)1.对比学习2.全局对比损失3.空间对比损失二、特征的修正三、对比蒸馏(ContrastiveDistillation)四、少样本分类五、实验结果总结前言这篇论文提出了一个采用非episodictraining方法的少样本图像分类算法,作者来自巴黎萨克雷大学,于2020.12.26挂在arxiv上:论文链接这篇论文
- 【论文理解】Batch Normalization论文中关于BN背景和减少内部协变量偏移的解读(论文第1、2节)
takedachia
论文阅读笔记深度学习人工智能神经网络计算机视觉
最近在啃BatchNormalization的原论文(Title:BatchNormalization:AcceleratingDeepNetworkTrainingbyReducingInternalCovariateShift)。详细记录一下对论文前面部分的个人笔记和理解,包括第一部分的Introduction和第二部分的TowardsReducingInternalCovariateShif
- SAM(Segment Anything)论文理解
努力当总裁
人工智能计算机视觉cnn深度学习数据挖掘
【废话可不看】第一次有位教授给我推荐这个Model,我以为只是和往常一样,又出现一个性能稍微提升的算法模型结构,看了一眼名字“分割世间万物”,觉得是个吹水的东东,就没再往下看了。今天老板让我研究研究这个东东,作为打工人,乖乖开启了研究之旅,结果为自己的无知狠狠地打脸!这篇文章具有划时代意义,至少代表了语义分割大模型(没有说视觉大模型,是因为还有分类和检测)的雏形,作者也很慷慨,授人以鱼且授人以渔:
- EfficientDet论文讲解
韩师兄_
算法目标检测论文阅读考研论文笔记
目录EfficientDet0、摘要1、整体架构1.1BackBone:EfficientNet-B01.2Neck:BiFPN特征加强提取网络1.3Head检测头1.4compoundscaling2、anchors先验框3、loss组成4、论文理解5、参考资料EfficientDet影响网络的性能(或者说规模)的三大因素:depth(layer的重复次数),width(特征图channels)
- Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images论文理解
小仝爱吃肥牛
目标检测cnn目标检测神经网络人工智能原型模式
代码:https://github.com/Ybowei/P-CNN目录1.研究背景2.基本概念--Few-ShotObjectDetection3.研究方法PLN--原型学习网络P-GRPN--原型引导的区域生成网络ROIAligh--感兴趣区域对齐Dectionhead--检测头训练策略4.实验结果1.研究背景随着深度学习特别是深度卷积神经网络的兴起,利用其强大的特征提取能力,在自然场景图像中
- BSVD论文理解:Real-time Streaming Video Denoising with Bidirectional Buffers
牧羊女说
图像和视频去噪计算机视觉人工智能深度学习
BSVD是来自香港科技大学的一篇比较新的视频去噪论文,经实践,去噪效果不错,在这里分享一下对这篇论文的理解。论文地址:https://arxiv.org/abs/2207.06937代码地址:GitHub-ChenyangQiQi/BSVD:[ACMMM2022]Real-timeStreamingVideoDenoisingwithBidirectionalBuffers我们都知道,在超低照度拍
- BERT论文理解-理论版
jianafeng
bert自然语言处理深度学习
目录BERT模型架构输入表征预训练任务代码实现Encoder编码器模块BERT模型架构BERT模型架构是一种多层双向变换器(Transformer)编码器。至于什么是变换器的注释及实现,参考哈佛Vaswani等人(2017)的优秀代码指南(http://nlp.seas.harvard.edu/2018/04/03/attention.html)BERT有两种大小:(1)Base版:L=12;H=
- 点云网络的论文理解(二)- PointNet的pytorch复现
BuptBf
PointNet深度学习
1.了解PointNet为了更好的复现这个东西我们需要先了解这个东西,先把原文给出的图片放在这里,之后我们再一点点理解。1.1点云的特点1.1.1无序性:也就是说这个点的先后顺序和实际上是什么无关你不管这些点加入集合的顺序如何,最后的最后他们组成的图形还是那么个图形,也就是说这些东西的顺序是完全没有必要的。所以我们必须使用对称的函数:也就是说,这个函数必须要满足,你怎么调换函数变量的输入顺序,函数
- 【论文理解】FedSky: An Efficient and Privacy-Preserving Scheme for Federated Mobile Crowdsensing
卷卷卷不动
paper论文阅读同态加密
这篇论文同样是来自陆老师组的,发表在IEEEINTERNETOFTHINGSJOURNAL上的一篇关于联邦学习、同态加密的文章。目录论文背景群智感知(CrowdSensing)F-MCS本文的主要贡献模型与设计目标系统模型安全模型设计目标PRELIMINARIESA.FedAvgAlgorithmB.DifferentVariantsofSkylineQueriesC.BilinearPairin
- Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting 论文理解+机翻
顺顺不吃竹笋
剪枝学习深度学习人工智能机器学习
背景:快速的城市化带来了人口的增长,并带来了巨大的流动性和挑战性。在这些挑战中,智能交通系统是一个重要领域,交通预测是城市交通管理的重要部分。问题描述:论文关注的是如何准确的预测未来的交通状况,例如交通流量和速度、乘客需求等。方法:传统的预测方法采用时间序列模型,它们无法捕捉到大规模交通的非线性相关性和复杂的时空模式。论文提出了一种叫做AdaptiveGraphConvolutionalRecur
- 【目标检测】SPP-Net论文理解(超详细版本)
旅途中的宽~
目标检测经典论文导读目标检测深度学习计算机视觉SPPNet
目录:目标检测—SPP-Net论文一、初步认识二、研究背景三、研究动机1.关于图像尺寸的理解2.关于为何全连接层需要固定输入四、SPP-Net作出的改进1.与传统CNN的对比2.与R-CNN的对比1)R-CNN模型2)SPP-Net模型五、SPP-Net中的难点六、原始图像中的ROI如何映射到特征图七、ROI池化层八、总结一、初步认识SPP-Net是出自2015年发表在IEEE上的论文,全名为《S
- yolo3解析
迷途的Go
yolov3解析yolo系列论文看过,源码包调过,抽点时间把论文理解和源码做个一一对应,加深理解,论文https://pjreddie.com/darknet/yolo/源码看的mxnet,gluon-cv,代码地址:https://github.com/dmlc/gluon-cvyolov3networkdarknet53一共53层卷积,除去最后一个FC总共52个卷积用于当做主体网络,主体网络被
- RepVGG论文理解
孟孟单单
论文写作python
目录RepVGG:MakingVGG-styleConvNetsGreatAgain(RepVGG:让vgg风格的ConvNets再次伟大)参考链接结构重参数化的实质3.1.SimpleisFast,Memory-economical,Flexible简单就是快速,节省内存,灵活3.2Training-timeMulti-branchArchitecture培训时-多分支架构3.3Re-param
- 论文理解之面向脑驱动的仿人机器人:基于脑电的BCI异步直接控制
A哆啦A梦
BCI
这篇文章还没有修改很完善,之后会再进行一些修改原论文:TowardBrain-ActuatedHumanoidRobots:AsynchronousDirectControlUsinganEEG-BasedBCI论文链接:https://www.semanticscholar.org/paper/Toward-Brain-Actuated-Humanoid-Robots%3A-Asynchrono
- Focal Loss与GHM 理解与使用
HxShine
Tensorflownlp算法学习总结
一、理解5分钟理解FocalLoss与GHM——解决样本不平衡利器https://zhuanlan.zhihu.com/p/80594704二、使用GHM论文理解及实现https://zheng-yuwei.github.io/2019/07/08/13_GHM%E8%AE%BA%E6%96%87%E7%90%86%E8%A7%A3%E5%8F%8A%E5%AE%9E%E7%8E%B0/ghm-k
- ResNet 论文理解含视频
小喵要摸鱼
ResNet深度残差网络ResNet论文理解
ResNet论文理解问题导引论文理解Q1.神经网络真的越深越好吗?Q2.为什么加深网络会带来退化问题?Q3.如何构建更深层的网络?基于残差的深度学习框架ResidualLearning的理论依据网络结构ResNet的成绩总结视频理解引入恒等映射ResNet论文理解问题导引论文理解ResNet网络的论文名字是《DeepResidualLearningforImageRecognition》,发表在2
- 【计算机视觉 | 扩散模型】新论文 | DragGAN论文:如果甲方想把大象 P 转身,你只需要拖动 GAN 就好了
旅途中的宽~
计算机视觉计算机视觉生成对抗网络深度学习GAN
文章目录一、论文说明二、前言三、论文理解四、实验4.1定性评估4.2定量评估4.3讨论一、论文说明2023年5月18日提交的论文,华人一作。论文地址:https://arxiv.org/pdf/2305.10973.pdf项目地址:https://vcai.mpi-inf.mpg.de/projects/DragGAN/代码地址为:https://github.com/XingangPan/Dra
- 3D深度学习的初步探索(PointNet,PointNet++,Geo-CNN论文理解)
xiaobai_Ry
#点云处理深度学习点云3D检测PointNet
【点云笔记】3D深度学习的初步探索【PointNet,PointNet++,Geo-CNN】概述PPT概览PointNet,PointNet++,Geo-CNN论文PPT自动演示概述下面的PPT及演示是之前课程作业做的,时间已经有些久远(2020年),主要是PointNet,PointNet++,Geo-CNN论文相关要点的介绍。PPT设置的是自动播放模式,对应汇报的语言是调用科大讯飞的机器人语音
- xgboost导读及论文理解
璆_ca09
X-gboost(Extreme-GradientBoosting)优化的分布式梯度提升算法,end-to-end不需要特征抽取。输入原始数据,就能输出目标结果。整篇论文技术实现分两个部分核心点1.算法推导(paper篇幅30%)判别式:判别公式:boosterForest:森林中树的数量,受到max_estimator的约束:森林中的每颗树显而易见,xgboost是非线性(Tree)的加法模型损
- 【音视频第12天】GCC论文阅读(3)
Magic_o
音视频音视频论文阅读
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel2.1q
- 【音视频第10天】GCC论文阅读(1)
Magic_o
音视频音视频论文阅读
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel3.Fe
- 【音视频第11天】GCC论文阅读(2)
Magic_o
音视频音视频论文阅读ffmpeg
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel3.Fe
- Segmentation-driven 6D Object Pose Estimation论文理解
KirutoCode
6DEoF
文章目录本文创新点\贡献方法方法概述分割流回归流训练最终loss推理实验结果总结本文创新点\贡献分割驱动,让每个可以看到的部分都对关键点位置的预测做出贡献方法方法概述假设:物体是刚体且CAD模型已知。对输入的图片做卷积,然后产生分割和预测,将图片分成S×SS\timesSS×S个网格,每个网格都i预测属于的类别并回归关键点的位置,关键点在这里就是交点,然后根据2D-3D对应来做EPnP分割流对每个
- Position-aware Attention and Supervised Data Improve Slot Filling论文理解
qzlydao
论文题目:Position-awareAttentionandSupervisedDataImproveSlotFilling发表作者:YuhaoZhang,VictorZhong,DanqiChen,GaborAngeli,ChristopherD.Manning出版源:Proceedingsofthe2017ConferenceonEmpiricalMethodsinNaturalLangua
- 基于Starts的自制Ekstaz回归测试系统设计与实现 毕业论文++英文论文+答辩PPT+演示视频+项目源码
毕业设计论文资料
目录自制Ekstazi11.缘起12.论文理解11.依赖格式22.分析(A)阶段23.执行(E)阶段34.收集(C)阶段35.非调试校验和33.项目结构&原理讲解3自制Ekstazi1.缘起在自动化测试这门课程中,我学习到了有关源码级测试、移动端测试、智能软件测试的知识,并且对源码级测试产生了浓厚的兴趣。我们知道,回归测试是当今自动化测试研究的热门重点之一,项目中平均80%的测试成本都用在了回归测
- 【目标识别学习笔记系列】一、RCNN论文理解
zl3090
目标识别深度学习
前言:本文是在总结以下博客的基础上对RCNN的理解,感谢原作者文章,使我收获很大,在此整理笔记,仅作学习用途。https://blog.csdn.net/shenxiaolu1984/article/details/51066975https://blog.csdn.net/u011534057/article/details/51218250RegionCNN(RCNN)可以说是利用深度学习进行
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p