Deep Learning Strong Parts for Pedestrian Detection

ICCV 2015

本文主要利用深度学习结合 part model 得到一个 DeepParts 来解决 行人检测 中的 遮挡问题。

DeepParts has four main contributions:
1)通过数据驱动,自动选择若干互补的局部模型
2) we are the first to extensively explore how single part detector and
their ensemble based on ConvNets contribute to pedestrian detection
3) We propose a novel method to handling proposal shifting problem
4) We show that with complementary part selection, a new state-of-the-art miss
rate of 11.89% can be achieved on the Caltech reasonable set

先看看下图:
Deep Learning Strong Parts for Pedestrian Detection_第1张图片

part model 怎么选择? the part selection is determined by data and the effectiveness of the part pool can be fully explored.

Deep Learning Strong Parts for Pedestrian Detection_第2张图片

2 Training Part Detectors
我们首先构建一个 part pool, 然后 对每个 part 训练一个检测器,针对proposal windows 偏移问题提出一个解决方法,最后综合所有检测器的分数,得到整个行人检测结果。

2.1. Part Pool
我们一共选了 45个 prototypes。Two examples regarding the parts of head-left-shoulder and leg are shown
Deep Learning Strong Parts for Pedestrian Detection_第3张图片

2.2. Training
Deep Learning Strong Parts for Pedestrian Detection_第4张图片

这里我们尝试了三个模型,三个预训练策略
Three deep models are AlexNet [15], Clarifai [39], and GoogLeNet [30]
Three pre-training strategies include:
(1) 参数高斯分布随机初始化,无 预训练 (strategy 1),
(2) ImageNet 预训练 (strategy 2),
(3) 输入 ImageNet 图像中的 object 块预训练 (strategy 3)

2.3. Handle Shifting in Deep Model
Deep Learning Strong Parts for Pedestrian Detection_第5张图片

4 Experiments

Deep Learning Strong Parts for Pedestrian Detection_第6张图片

Deep Learning Strong Parts for Pedestrian Detection_第7张图片

Deep Learning Strong Parts for Pedestrian Detection_第8张图片

你可能感兴趣的:(ZJ)