解决方法:
1、模糊;
2、二值化;
3、形态学操作;
4、轮廓发现+面积周长计算。
1)高斯模糊
因为陨石周围有许多小块的陨石,我们可以把它们当做噪点,可使用高斯模糊来去除。
Mat GaussImg;
GaussianBlur(src, GaussImg, Size(7, 7), 0, 0);
imshow("Gauss Image", GaussImg);
2)二值化
这里因为图像的色调比较接近,所以这张图像是一张单峰图。所以,进行自动化阈值操作时,这里选取THRESH_BINARY | THRESH_TRIANGLE来进行二值化。
Mat binary;
threshold(GaussImg, binary, 0, 255, THRESH_BINARY | THRESH_TRIANGLE);
imshow("binary Image", binary);
3)形态学操作
这里使用闭操作,先膨胀后腐蚀,填充中间的小洞。
Mat morphImg;
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
morphologyEx(binary, morphImg, MORPH_CLOSE, kernel, Point(-1, -1), 1);
imshow("morph Image", morphImg);
4)轮廓发现
Mat contoursImg=Mat::zeros(src.size(),CV_8UC3);
vector>contours;
vectorhireachy;
findContours(morphImg, contours,RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(-1, -1));
for (size_t i = 0; i < contours.size(); i++)
{
Rect rect = boundingRect(contours[i]);
if (rect.width < src.cols / 2)
continue;
drawContours(contoursImg, contours, static_cast(i),
Scalar(0, 0, 255 ), 2, 8, hireachy, 0, Point(0, 0));
//计算面积与周长
float area = contourArea(contours[i]);
float length = arcLength(contours[i], true);
printf("对象图像面积为:%f\n", area);
printf("对象图像周长为:%f\n", length);
}
imshow("contours Image", contoursImg);
这里采用RETR_EXTERNAL函数二部用RETR_TREE,因为RETR_TREE是树形结构,它会显示所有有轮廓的形状,比如:
而采用了RETR_EXTERNAL之后,就是这样的:
它里面包含的形状就不会显示。
这一段操作的结果是:
附上源码:
#include
#include
#include
using namespace cv;
using namespace std;
Mat src;
int main(int argc, char** argv)
{
src = imread("D:/test/space.png");
if (src.empty())
{
printf("图片未找到!!!");
return -1;
}
imshow("inut image", src);
//高斯模糊
Mat GaussImg;
GaussianBlur(src, GaussImg, Size(7, 7), 0, 0);
imshow("Gauss Image", GaussImg);
cvtColor(GaussImg, GaussImg, CV_BGR2GRAY);
//二值化操作
Mat binary;
threshold(GaussImg, binary, 0, 255, THRESH_BINARY | THRESH_TRIANGLE);
imshow("binary Image", binary);
//形态学操作
Mat morphImg;
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
morphologyEx(binary, morphImg, MORPH_CLOSE, kernel, Point(-1, -1), 1);
imshow("morph Image", morphImg);
//轮廓发现
Mat contoursImg=Mat::zeros(src.size(),CV_8UC3);
vector>contours;
vectorhireachy;
findContours(morphImg, contours,RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(-1, -1));
for (size_t i = 0; i < contours.size(); i++)
{
Rect rect = boundingRect(contours[i]);
if (rect.width < src.cols / 2)
continue;
drawContours(contoursImg, contours, static_cast(i),
Scalar(0, 0, 255 ), 2, 8, hireachy, 0, Point(0, 0));
//计算面积与周长
float area = contourArea(contours[i]);
float length = arcLength(contours[i], true);
printf("对象图像面积为:%f\n", area);
printf("对象图像周长为:%f\n", length);
}
imshow("contours Image", contoursImg);
waitKey(0);
return 0;
}