The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
题意:1<=x<=n,1<=m<=n,gcd(x,n)>=m,求满足条件的x的个数
解法:
先找出N的约数x,并且gcd(x,N)>= M,结果为所有N/x的欧拉函数之和。
因为x是N的约数,所以gcd(x,N)=x >= M;
设y=N/x,y的欧拉函数为小于y且与y互质的数的个数。
设与y互质的的数为p1,p2,p3,…,p4
那么gcd(x* pi,N)= x >= M。
也就是说只要找出所有符合要求的y的欧拉函数之和就是答案了。
超时代码:
#include
#include
#include
using namespace std;
//求欧拉函数
int Euler(int n)
{
int ret=n;
for(int i=2;i<=sqrt(n);i++)
{
if(n%i==0)
{
ret=ret/i*(i-1);
while(n%i==0)
n/=i;
}
}
if(n>1)
ret=ret/n*(n-1);
return ret;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
int ans=0;
for(int i=2;i<=n;i++)
{
if(n%i==0&&i>=m)
{
ans+=Euler(n/i);
}
}
cout<
ac代码:
#include
#include
#include
using namespace std;
//求欧拉函数
int Euler(int n)
{
int ret=n;
for(int i=2;i<=sqrt(n);i++)
{
if(n%i==0)
{
ret=ret/i*(i-1);
while(n%i==0)
n/=i;
}
}
if(n>1)
ret=ret/n*(n-1);
return ret;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
int ans=0;
int sq_n=sqrt(n);
for(int i=2;i<=sq_n;i++)
{
if(n%i==0)
{
if(i>=m) ans+=Euler(n/i);
if(n/i>=m) ans+=Euler(i);
}
}
if(n!=1&&sq_n*sq_n==n&&sq_n>=m) ans-=Euler(n/sq_n);
cout<