Max Sum 最大连续和的子序列 HDU 1003 (一维序列DP)

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input
 
   
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
 
   
Case 1: 14 1 4 Case 2: 7 1 6
题意:给n个数字,求出n个数字最大的连续和,起始位置和终点位置是多少。
思路:DP,当数字和小于0的时候重置,并记录起始位置,如果大于ans,则更新终止位置
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
int main()
{
    int n,t,icase=1;
    scanf("%d",&t);
    for(int icase=1;icase<=t;icase++)
    {
        scanf("%d",&n);
        int ans=-100000000,s=-100000000,elem,st,en,mid;
        for(int i=1;i<=n;i++){
            scanf("%d",&elem);
           if(s<0){
            s=elem;
            mid=i;
           }
            else
             s+=elem;

            if(s>ans) ans=s,en=i,st=mid;
        }
        printf("Case %d:\n",icase);
        printf("%d %d %d\n",ans,st,en);
        if(icase!=t)
        printf("\n");
    }
    return 0;
}


 
  
 
  

你可能感兴趣的:(ACM_经典DP)