题目:http://acm.hdu.edu.cn/showproblem.php?pid=3804
题意:给定一棵树,有边权,首先输入一个n,然后n - 1行a b c,代表点a点b之间的边权为c,接着输入一个m,然后m行x c,查询点1到点x之间的路径上不大于c的边权最大是多少
思路:首先树链剖分啊,然后我写了一个很直白的线段树,然后也很直白的T了。放了一周多的时间,还是没有什么思路,百度一下,发现是离线操作线段树,应用在本题中是这样的:先建好线段树,把每个点的权值全设为-1,把n - 1个点点之间的关系存起来,把m个查询也存起来,并且都按照权值排序,然后对于查询,开始按权值从小到大去查询,查询之前先把边权小于等于本次查询权值的都更新到线段树上,然后问题就变成了查询区间最大值,然后就解决啦
总结:第一次碰到离线操作线段树的题目,真是巧妙啊,好题!
#include
#include
#include
#include
using namespace std;
const int N = 100010;
struct edge
{
int to, next;
}g[N*2];
struct node
{
int l, r, val;
}s[N*4], s1[N], s2[N];
int dep[N], siz[N], son[N], top[N], fat[N], id[N], head[N];
int n, cnt, num;
void add_edge(int v, int u)
{
g[cnt].to = u;
g[cnt].next = head[v];
head[v] = cnt++;
}
void dfs1(int v, int fa, int d)
{
dep[v] = d, siz[v] = 1, son[v] = 0, fat[v] = fa;
for(int i = head[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(u != fa)
{
dfs1(u, v, d + 1);
siz[v] += siz[u];
if(siz[son[v]] < siz[u]) son[v] = u;
}
}
}
void dfs2(int v, int tp)
{
top[v] = tp, id[v] = ++num;
if(son[v]) dfs2(son[v], tp);
for(int i = head[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(u != fat[v] && u != son[v]) dfs2(u, u);
}
}
void push_up(int k)
{
s[k].val = max(s[k<<1].val, s[k<<1|1].val);
}
void build(int l, int r, int k)
{
s[k].l = l, s[k].r = r, s[k].val = -1;
if(l == r) return;
int mid = (l + r) >> 1;
build(l, mid, k << 1);
build(mid + 1, r, k << 1|1);
}
void update(int x, int c, int k)
{
if(s[k].l == s[k].r)
{
s[k].val = c;
return;
}
int mid = (s[k].l + s[k].r) >> 1;
if(x <= mid) update(x, c, k << 1);
else update(x, c, k << 1|1);
push_up(k);
}
int query(int l, int r, int k)
{
if(l <= s[k].l && s[k].r <= r)
{
return s[k].val;
}
int mid = (s[k].l + s[k].r) >> 1;
int ans = -1;
if(l <= mid) ans = max(ans, query(l, r, k << 1));
if(r > mid) ans = max(ans, query(l, r, k << 1|1));
return ans;
}
int seek(int v, int u)
{
int t1 = top[v], t2 = top[u], ans = -1;
while(t1 != t2)
{
if(dep[t1] < dep[t2])
swap(t1, t2), swap(v, u);
ans = max(ans, query(id[t1], id[v], 1));
v = fat[t1], t1 = top[v];
}
if(v == u) return ans;
if(dep[v] > dep[u]) swap(v, u);
return max(ans, query(id[son[v]], id[u], 1));
}
void slove()
{
int m, ans[N];
scanf("%d", &m);
for(int i = 1; i <= m; i++)
{
/*此处用l表示X,val表示要查询的值*/
scanf("%d%d", &s2[i].l, &s2[i].val);
s2[i].r = i; /*r记录查询的初始位置,因为之后排序顺序就乱了,也可以把查询结果付给r,那样就可以顺序输出*/
}
/*排序用的lambda表达式*/
sort(s1 + 1, s1 + 1 + n - 1, [](node a, node b){return a.val < b.val;});
sort(s2 + 1, s2 + 1 + m, [](node a, node b){return a.val < b.val;});
int j = 1;
for(int i = 1; i <= m; i++)
{
/*每次查询前,先把小于等于当前查询值的边权更新到线段树*/
while(s1[j].val <= s2[i].val && j <= n - 1)
{
if(dep[s1[j].l] > dep[s1[j].r]) swap(s1[j].l, s1[j].r);
update(id[s1[j].r], s1[j].val, 1);
j++;
}
ans[s2[i].r] = seek(1, s2[i].l);
}
for(int i = 1; i <= m; i++)
printf("%d\n", ans[i]);
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
memset(head, -1, sizeof head);
cnt = num = 0;
for(int i = 1; i <= n - 1; i++)
{/*离线储存没有开新的结构体,而是重复用了线段树的节点结构体,看着比较乱。。。*/
/*此处用l, r表示相连的两点, val是权值*/
scanf("%d%d%d", &s1[i].l, &s1[i].r, &s1[i].val);
add_edge(s1[i].l, s1[i].r);
add_edge(s1[i].r, s1[i].l);
}
dfs1(1, 0, 1);
dfs2(1, 1);
build(1, num, 1);
slove();
}
return 0;
}