HDU2586(LCA树上倍增模板)

 题意:给你一棵树树上任意两节点有且仅有一条路径可以到达,问求任意两节点间的距离

题解:LCA树上倍增


o#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define clr(a,b)  memset(a,b,sizeof(a))
#define il        inline
typedef long long ll;
const int maxn = 40000 + 2;
const int minn = 130 + 1;
struct Edge
{
    int to,len;
    Edge(int to,int len):to(to),len(len){}
    Edge(){}
};
vector graph[maxn];
int n,m;
int deep[maxn],dis[maxn],fa[maxn][30];
il void add(int a,int b,int dis)
{
    graph[a].push_back(Edge(b,dis));
    graph[b].push_back(Edge(a,dis));
    return;
}
il void dfs(int v)//dfs求每一子节点到根节点的距离存放到dis数组
{
    deep[v]=deep[fa[v][0]]+1;
    for(int i=0;fa[v][i];++i){fa[v][i+1]=fa[fa[v][i]][i];}//进行树上倍增fa[v][i]代表v向上2^i层的父节点
    for(auto i:graph[v])
    {
        if(deep[i.to] ){continue;}
        dis[i.to]=dis[v]+i.len;
        fa[i.to][0]=v;
        dfs(i.to);
    }
    return ;
}

il int lca(int a,int b)
{
    if(deep[a]=0;--i)//将a跳转到与b相同deep的父节点
    {
        if(deep[fa[a][i]]>=deep[b]){a=fa[a][i];}
    }
    if(a==b)return a;
    for(i=20;i>=0;--i)//求a,b的公共节点
    {
        if(fa[a][i]!=fa[b][i]){a=fa[a][i];b=fa[b][i];}
    }
    return fa[a][0];
}
il void init()
{

    clr(deep,0);
    clr(dis,0);
    clr(fa,0);
    clr(graph,0);
    return ;
}
int main()
{
    int t,a,b,tdis;
    scanf("%d",&t);
    while(t--)
    {
        init();
        scanf("%d%d",&n,&m);
        for(int i=1;i

 

你可能感兴趣的:(图论)