UVA818解题报告

/*
*     UVA 818
*理解了题意和水题差不多
*
*条件:一些可能相同的无向边
*
*要求:
*    构建一个满足如下三个要求的图
*    一、不能有环
*    二、连成一条直线
*    三、所有节点要连在一起
*
*操作:我们仅可以选中一个节点来连接不同的线段
*    每当我们选中一个节点时,该节点与其他节点的连接断开
*    此时,节点可用于连接线段
*
*解法:位运算暴力枚举节点状态(选中或未选中)
*
*注意:测试数据极强,注意处理相同边
*
*PS:因为博主最开始没有注意到相同边的情况,所以
*  博主这里其实采用了一种比较费劲的解法
*
*测试数据:

Sample Input
2 1 2 1 2 -1 -1
2 1 2 2 1 1 2 2 1 -1 -1
3 1 2 -1 -1
0

Sample output
Set 1: Minimum links to open is 0
Set 2: Minimum links to open is 0
Set 3: Minimum links to open is 1
*/


#include 
#include 
#include 
#include 

using namespace std;

#define N 30
#define INF 0x3f3f3f3f
#define _for(i,a,b) for (int i = (a); i < (b); ++i)

int n, cnt;
int vis[N], ma[N][N];
vector<int> G[N];

void init() {
    int u, v;
    memset(ma, 0, sizeof(ma));
    _for (i, 0, N) G[i].clear();
    while (scanf("%d%d", &u, &v) != EOF && u != -1) {
        if (!ma[u][v]) {
            G[u].push_back(v); G[v].push_back(u);
            ma[u][v] = 1; ma[v][u] = 1;
        }
    }
}

int num(int x) {
    return x == 0 ? 0 : num(x / 2) + (x & 1);
}

//检查是否有环
bool dfs(int i, int s, int f) {
    if (vis[i]) return true;

    vis[i] = 1;

    _for (j, 0, G[i].size()) {
        int v = G[i][j];
        if (v == f) continue;
        if ((1 << (v - 1) & s)) continue;
        if (dfs(v, s, i)) return true;
    }

    return false;
}

bool check(int s) {

    //检查是否存在是否有两个或多个分支
    for (int i = 1; i <= n; ++i) {

        int res = 0;
        if ((1 << (i - 1)) & s) continue;

        _for (j, 0, G[i].size()) {
            int v = G[i][j];
            if ((1 << (v - 1)) & s) continue;
            ++res;
        }

        if (res > 2) return true;
    }

    //检查是否构成环
    cnt = 0;
    memset(vis, 0, sizeof(vis));
    for (int i = 1; i <= n; ++i) {
        if ((1 << (i - 1)) & s) continue;
        if (vis[i]) continue;

        ++cnt;

        if (dfs(i, s, -1)) {
            return true;
        }
    }

    return false;
}

int slove() {
    int ans = INF;
    _for (i, 0, (1 << n)) {
        if (!check(i)) {
            if (num(i) >= cnt - 1) {
                ans = min(ans, num(i));
            }
        }
    }
    return ans;
}

int main() {
    #ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
    #endif // ONLINE_JUDGE
    int kase = 0;
    while (scanf("%d", &n) == 1 && n) {
        init();
        printf("Set %d: Minimum links to open is %d\n", ++kase, slove());
    }
    return 0;
}

你可能感兴趣的:(解题报告)