bit.ly的1.usa.gov数据练习

数据来源http://1usagov.measuredvoice.com/2013/

bit.ly的1.usa.gov数据练习_第1张图片

代码区域:


path="D:\demo1\usagov_bitly_data2013-05-17-1368832207/usagov_bitly_data2013-05-17-1368832207.txt"
print open(path).readline()

result:

{ "a": "Mozilla\/5.0 (Linux; U; Android 4.1.2; en-us; HTC_PN071 Build\/JZO54K) AppleWebKit\/534.30 (KHTML, like Gecko) Version\/4.0 Mobile Safari\/534.30", "c": "US", "nk": 0, "tz": "America\/Los_Angeles", "gr": "CA", "g": "15r91", "h": "10OBm3W", "l": "pontifier", "al": "en-US", "hh": "j.mp", "r": "direct", "u": "http:\/\/www.nsa.gov\/", "t": 1368832205, "hc": 1365701422, "cy": "Anaheim", "ll": [ 33.816101, -117.979401 ] }

path="D:\demo1\usagov_bitly_data2013-05-17-1368832207/usagov_bitly_data2013-05-17-1368832207.txt"
import json
record=[json.loads(line) for line in open(path)]#列表推导式
print record[2]

result:

{u'a': u'Mozilla/5.0 (Windows NT 6.1; rv:21.0) Gecko/20100101 Firefox/21.0', u'c': u'US', u'nk': 1, u'tz': u'America/Phoenix', u'gr': u'AZ', u'g': u'10DaxOu', u'h': u'10DaxOt', u'cy': u'Fort Huachuca', u'l': u'jaxstrong', u'al': u'en-US,en;q=0.5', u'hh': u'1.usa.gov', u'r': u'http://www.facebook.com/l.php?u=http%3A%2F%2F1.usa.gov%2F10DaxOt&h=4AQHdCPHx&s=1', u'u': u'http://www.saj.usace.army.mil/Media/NewsReleases/tabid/6071/Article/14065/corps-to-continue-water-releases-from-lake-okeechobee.aspx', u't': 1368832209, u'hc': 1368814585, u'll': [31.5273, -110.360703]}

对时区进行计数

path="D:\demo1\usagov_bitly_data2013-05-17-1368832207/usagov_bitly_data2013-05-17-1368832207.txt"
import json
record=[json.loads(line) for line in open(path)]#列表推导式
time_zones=[rec['tz'] for rec in record if 'tz' in rec]
print time_zones[:10]#first 10

from collections import defaultdict
def getcounts(sequence):
    counts=defaultdict(int)#所有值初始化为0默认字典对象
    for x in sequence:
        counts[x]+=1
    return counts
count=getcounts(time_zones)
print count['America/Phoenix']

'''
前九位时区及计数值
'''
def top_counts(count_dict,n=9):
    value_key_pairs=[(count,tz) for tz,count in count_dict.items()]#计数字典的键值对
    value_key_pairs.sort()
    return value_key_pairs[-n:]#从小到大的排序中最后n个
print top_counts(count)

[u'America/Los_Angeles', u'', u'America/Phoenix', u'America/Chicago', u'', u'America/Indianapolis', u'America/Chicago', u'', u'Australia/NSW', u'']

 40

[(50, u'America/Indianapolis'),
 (85, u'Europe/London'),
 (89, u'America/Denver'), 
 (102, u'Asia/Tokyo'), 
 (184, u'America/Puerto_Rico'),  
 (421, u'America/Los_Angeles'),  
 (636, u''), 
 (686, u'America/Chicago'), 
 (903, u'America/New_York')]

用pandas对时区进行计数

from pandas import DataFrame,Series
import pandas as pd
import numpy as py
frame=DataFrame(record)
print frame

tz_counts=frame['tz'].value_counts()
print  tz_counts[:9]

#我们给缺失的时区添上一个替代值Tianjin,可以通过布尔型数组索引加以替换空字符串
clean_tz=frame['tz'].fillna('Tianjin')#NaN缺失值
clean_tz[clean_tz=='']='Unknown'#空字符串
part_tz_count=clean_tz.value_counts()
print part_tz_count[:9]

tz_counts[:9].plot(kind='barh',rot=2)#rot调节图放大缩小,‘barh’:horizontal bar plot

result
bit.ly的1.usa.gov数据练习_第2张图片

America/New_York        903
America/Chicago         686
                        636
America/Los_Angeles     421
America/Puerto_Rico     184
Asia/Tokyo              102
America/Denver           89
Europe/London            85
America/Indianapolis     50
Name: tz, dtype: int64



America/New_York       903
America/Chicago        686
Unknown                636
America/Los_Angeles    421
America/Puerto_Rico    184
Tianjin                120
Asia/Tokyo             102
America/Denver          89
Europe/London           85
Name: tz, dtype: int64

bit.ly的1.usa.gov数据练习_第3张图片


Series一维数组对象,下面构造一个

'''
Python split()通过指定分隔符对字符串进行切片,
split(str="", num=string.count(str)).
str -- 分隔符,默认为所有的空字符,包括空格、换行(\n)、制表符(\t)等。
如果参数num 有指定值,则仅分隔 num 个子字符串.
'''
results=Series([x.split()[0] for x in frame.a.dropna()])#在agent属性中去掉缺失值    
print results[:5]
print results.value_counts()[:8]

cframe=frame[frame.a.notnull()]
operating_sys=np.where(cframe['a'].str.contains('Windows'),'Windows','Not Windows')
print operating_sys[:5]

groupby_tz_os=cframe.groupby(['tz',operating_sys])#背后原理靠数据库的concat,现在仅仅是一个GroupBy对象,
#它实际上还没有进行任何计算,只是含有一些有关分组键的中间数据而已,然后我们可以调用GroupBy的size/mean方法来计算分组
#size函数类似于value_counts
agg_counts=groupby_tz_os.size().unstack().fillna(0)
agg_countss=groupby_tz_os.mean().unstack().fillna(0)
print agg_counts[:5]
print agg_countss[:5]


indexer=agg_counts.sum(1).argsort()#sum(1)是计数行为主,sum(0或空)是计数列属性
print indexer[:10]#argsort()按索引升序

take_subset=agg_counts.take(indexer)[-10:]
print take_subset

take_subset.plot(kind='barh',stacked=True)
take_subset.plot(kind='barh',stacked=False)

normed_subset=take_subset.div(take_subset.sum(1),axis=0)#如果axis=1Mismatched indices will be unioned together
normed_subset.plot(kind='barh',stacked=True)

result

0    Mozilla/5.0
1    Mozilla/4.0
2    Mozilla/5.0
3    Mozilla/5.0
4     Opera/9.80
dtype: object


Mozilla/5.0           3251
Mozilla/4.0            322
CakePHP                 38
ShortLinkTranslate      36
TVersity                30
Opera/9.80              28
Dalvik/1.6.0            19
Xenu                    15
dtype: int64



['Not Windows' 'Windows' 'Windows' 'Not Windows' 'Not Windows']



                     Not Windows   Windows
tz                                     
                         484.0    152.0
Africa/Cairo               0.0      3.0
Africa/Casablanca          0.0      1.0
Africa/Ceuta               4.0      2.0
Africa/Gaborone            0.0      1.0

bit.ly的1.usa.gov数据练习_第4张图片

tz
                                   55
Africa/Cairo                      101
Africa/Casablanca                 100
Africa/Ceuta                       36
Africa/Gaborone                    97
Africa/Johannesburg                42
America/Anchorage                  43
America/Argentina/Buenos_Aires     44
America/Argentina/Catamarca        47
America/Argentina/Cordoba          50
dtype: int64
其中null没有除去,只是除去了a.null


                      Not Windows  Windows
tz                                        
America/Phoenix              22.0     18.0
America/Indianapolis         29.0     21.0
Europe/London                62.0     23.0
America/Denver               41.0     48.0
Asia/Tokyo                   88.0     14.0
America/Puerto_Rico          93.0     91.0
America/Los_Angeles         207.0    214.0
                            484.0    152.0
America/Chicago             343.0    343.0
America/New_York            550.0    353.0

bit.ly的1.usa.gov数据练习_第5张图片
bit.ly的1.usa.gov数据练习_第6张图片

bit.ly的1.usa.gov数据练习_第7张图片

你可能感兴趣的:(python数据分析实战练习)