- DeepSeek接入大数据能做什么
PersistDZ
大数据与AI大数据
DeepSeek作为一家专注于AGI和AI大模型技术的公司,在大数据领域可以通过以下方式切入,结合其核心能力提供创新解决方案:一、DeepSeek接入大数据领域的技术路径多模态数据处理能力支持文本/图像/视频/传感器数据的统一处理自主研发的MoE(MixtureofExperts)架构可并行处理异构数据超大规模特征工程基于千亿参数模型的自动特征提取支持非结构化数据的深度语义解析实时计算优化自研分布
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
AI量金术师
金融资产组合模型进化论支持向量机人工智能算法金融python机器学习数学建模
目录0.承前1.解题思路1.1基础概念维度1.2技术实现维度1.3实践应用维度2.核函数实现2.1基础核函数2.2自定义核函数3.特征处理与优化3.1特征工程3.2参数优化4.实践应用策略4.1核函数选择指南4.2性能优化策略5.回答话术0.承前本文通过通俗易懂的方式介绍支持向量机(SVM)如何处理高维和复杂数据集,包括核函数技巧、特征工程和优化方法。如果想更加全面清晰地了解金融资产组合模型进化论
- Java分布式流处理,flink+kafka实现电商网站个性化商品推荐系统
图苑
分布式javaflink
文章目录戳底部名片,一起变现技术栈选择设计实现思路实现步骤及示例代码1.数据采集2.数据预处理3.特征工程4.模型训练5.结果输出6.前端展示戳底部名片,一起变现在现代电商环境中,用户每天都会浏览大量商品页面,而这些行为数据中蕴藏着丰富的信息。通过分析用户的浏览历史、购买记录以及对特定商品的兴趣程度,我们可以为用户提供更加个性化的商品推荐,从而提升用户体验和转化率。为了实现实时的个性化推荐,我们需
- 基于机器学习的DDoS检测系统实战
计算机毕业设计指导
机器学习ddos人工智能
基于机器学习的DDoS检测系统实战(Python+Scikit-learn)|毕业设计必备摘要:本文手把手教你从0到1实现一个轻量级DDoS攻击检测系统,涵盖数据预处理、特征工程、模型训练与可视化分析。一、项目背景与意义DDoS(分布式拒绝服务攻击)是网络安全领域的“头号公敌”,传统基于阈值的检测方法误报率高且难以应对新型攻击。机器学习通过分析流量行为模式,能更精准识别异常。适合场景:毕业设计选题
- 人工智能训练师如何做业务数据处理?
小宝哥Code
人工智能训练师人工智能python机器学习
以下是人工智能训练师处理业务数据的完整技术方案,结合Python代码示例和最佳实践:一、业务数据处理核心流程graphTDA[数据理解]-->B[数据清洗]B-->C[特征工程]C-->D[数据分割]D-->E[数据增强]E-->F[数据存储]二、关键步骤与Python实现1.数据理解与探索importpandasaspdimportsweetvizassv#加载数据df=pd.read_csv(
- 智能制造碳中和实战:基于深度学习的工业碳足迹实时监测与优化系统全解析
Coderabo
DeepSeekR1模型企业级应用制造深度学习人工智能
深度解析AI驱动的工业能耗智能管控体系——基于生产过程碳足迹实时监测的完整实战引言:智能制造的绿色革命在"双碳"目标驱动下,我国制造业正面临前所未有的能效升级挑战。传统能耗管理存在三大痛点:监测粒度粗放、响应滞后明显、优化缺乏依据。本方案基于DeepSeek-R1工业智能平台,构建了涵盖数据采集、特征工程、动态建模、实时优化的全栈解决方案,实现碳排放强度降低12-18%的实测效果。核心技术架构1.
- Python 数据挖掘与机器学习
岁月如歌,青春不败
人工智能python数据挖掘机器学习编程决策树随机森林神经网络
模块一:Python编程Python编程入门1、Python环境搭建2、如何选择Python编辑器?3、Python基础4、常见的错误与程序调试5、第三方模块的安装与使用6、文件读写(I/O)Python进阶与提高1、Numpy模块库2、Pandas模块库3、Matplotlib基本图形绘制4、图形样式的美化5、图形的布局6、高级图形绘制7、坐标轴高阶应用模块二:特征工程数据清洗1、描述性统计分析
- 100.5 AI量化面试题:在使用LSTM预测股票价格时,如何有效处理金融时间序列的非平稳性?
AI量金术师
金融资产组合模型进化论人工智能lstm金融python机器学习大数据
目录0.承前1.数据预处理1.1平稳性检验1.2数据转换2.特征工程2.1技术指标构建2.2时间特征提取3.LSTM模型设计3.1数据准备3.2模型架构4.训练与验证4.1时序交叉验证4.2滚动预测5.回答话术0.承前本文详细介绍使用LSTM处理金融时间序列时的关键技术点,包括数据预处理、特征工程、模型设计和验证方法。如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组
- 特征编码技术:onehot编码与label编码
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
特征编码技术:one-hot编码与label编码1.背景介绍在机器学习和数据科学领域,特征工程是一个至关重要的步骤。特征工程的目的是将原始数据转换成适合机器学习算法输入的格式。其中,特征编码是特征工程中的一个关键步骤。本文将重点介绍两种常用的特征编码技术:one-hot编码和label编码。2.核心概念与联系one-hot编码是一种常见的将类别型特征转换为数值型特征的方法。它的基本思想是为每一个类
- 心法利器[127] | 24年算法思考-特征工程和经典深度学习
机智的叉烧
算法深度学习人工智能
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[122]|效果提升的根本来源讨论心法利器[123]|算法面试的八股和非八股讨论心法利器[124]|24年算法思考-大模型的应用与训练篇心法利器[125
- 机器学习笔记——特征工程、正则化、强化学习
好评笔记
机器学习笔记机器学习人工智能AIAI编程算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- TensorFlow实现卷积神经网络CNN
红叶骑士之初
Tensorflow
一、卷积神经网络CNN简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取
- Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
weixin_30777913
音视频语言模型大数据人工智能
ApacheIceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。特别是在特征工程和模型训练方面,I
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 2025年美赛数学建模2025 MCM Problem A: Testing Time: The Constant Wear On Stairs A题 测试时间:楼梯上的持续磨损 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025数学建模美赛A题2025楼梯上的持续磨损matlab代码
目录Python1.数据预处理与特征工程数据标准化与特征构建2.行进方向偏好分析深度神经网络(DNN)用于方向性分析3.多人同时使用分析卷积神经网络(CNN)用于磨损模式识别4.时间序列分析LSTM模型用于时间序列预测matlab代码Python我们将采用更多的机器学习和深度学习技术,例如图像处理、深度神经网络(DNN)、卷积神经网络(CNN)等,并结合不同的算法进行更深入的分析。1.数据预处理与
- Upgini: 智能数据搜索与丰富化引擎 - 提升机器学习和人工智能模型准确性的利器
2401_87189860
人工智能机器学习
Upgini:智能数据搜索与丰富化引擎在当今数据驱动的世界中,机器学习和人工智能模型的准确性至关重要。然而,提高模型准确性往往是一项艰巨的任务,需要大量的特征工程和数据处理工作。幸运的是,Upgini这一创新的Python库为数据科学家和机器学习工程师提供了一个强大的解决方案。Upgini的核心功能Upgini是一个智能数据搜索和丰富化引擎,专为机器学习和AI设计。它的主要功能包括:自动特征发现与
- 大话特征工程:2.特征组合与描述
nnerddboy
白话机器学习机器人
公元2147年,人类文明站在科技的巅峰,所有决策、发展甚至感知都被“全维计算网络”所掌控。这套系统以高维空间中的数据为基础,试图预测并塑造未来。然而,这场辉煌的技术革命却在悄无声息之间酿成了人类最大的危机——维数灾难。系统的高维特征空间本应为复杂世界提供精确的洞察,但却因维度的无限膨胀开始背离现实。全球天气失控、医疗系统陷入混乱、社会资源分配崩溃,这些技术上的崩坏正在逐步渗透进人类的感知之中。建筑
- 简要说一下关于实现整个深度学习项目的流程
懒大王12138
机器学习深度学习神经网络人工智能算法
我们以识别生物信号为例子,其他类似与图像、文本和目标/故障检测的同样适用1.信号预处理;首先要将得到的生物信号进去噪音去除,另外所有的生物信号由于采样时间不同可能长度并不一样,这时候你需要统一长度。2.特征工程;你需要对所有的经过预处理并且将要输入神经网络的信号提取特征,比如信号的频谱图、时间-频率图或者是一些非线性的动力学特征,比如相空间这些。最重要的是提取的特征数据形状必须一致。3.搭建深度学
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
人工智能机器学习深度学习
摘要随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。引言日志是系统运行状态的关键数据来源,但面对海量日志数据,传统规则式分析显得力不从心。机器学习能够根据日志的历史数据和行为模式,通过训练模型检测异常情况,不
- 信息流广告预估技术在美团外卖的实践 思维导图-java架构
用心去追梦
java架构开发语言
创建一个关于“信息流广告预估技术在美团外卖的实践”的思维导图,并且专注于Java架构下的实现,可以按照以下结构来组织内容。这个思维导图将涵盖从数据收集、特征工程、模型选择与训练、系统架构设计到性能优化和效果评估的关键领域。思维导图结构1.项目背景美团外卖平台简介用户群体与市场定位信息流广告的意义提升用户体验增加广告收益2.用户及上下文数据收集数据来源用户行为(点击、浏览、下单等)广告主提供的创意素
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul