今天遇到一件事情,很不开心,于是决定分析一下Looper
的实现。
Looper
代码其实不多,只是用到了一些外部不能使用的类,然而代码难度也不是很大。下面且听我细细分析。
重点关注一下我们会使用的方法,比如Looper.prepare(); Looper.loop();
好的,先看一个prepare()
:
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
可以看到实际上是调用了一个私有方法,那就看这个私有方法吧。这个私有方法做了什么?
首先是判断sThreadLocal
里面是不是已经有Looper
对象了,没有就创建并存储到该对象中;有就抛异常,简单粗暴。
关于ThreadLocal
,可以看一下 Java并发编程:深入剖析ThreadLocal 这里的分析。
我大致说一下,就是说一个线程中通过 sThreadLocal
来保存的Looper
最多只有一个。辣么,这个就说明,Looper
在任何线程中最多只有一个对象。
再细看一下,这里通过调用Looper
的私有构造去创建了一个Looper
对象,而且这个私有构造,也仅仅是在这里被调用过。所以,再次确保,Looper
在任何线程中最多只有一个对象。
然后是loop()
方法,这个方法比较长:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
从头看:
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
这里可以看到,会先看看当前有没有 Looper
对象,如果没有就抛异常。这里也就可以看到,如果在自己的代码中,如果没有先执行Looper.prepare();
就调用Looper.loop();
的话就会抛异常。
然后的逻辑就是遍历当前Looper
的MessageQueue
,取出里面的每个Message
对象,都去调用msg.target.dispatchMessage(msg);
以及msg.recycleUnchecked();
所有的Message
对象都取出来了,就跳出循环了。这中间还打印了各种log
,不过这些不是关键了。
至于其中的Binder.clearCallingIdentity()
可以看看 android IPC通信中的UID和PID识别 ,不过与整体逻辑的分析没有什么影响。
总结:
Looper
要想实例化,必须调用prepare()
或者prepareMainLooper()
。Looper.loop()
之前必须先实例化Looper
对象。Looper
对象。Looper
的loop()
方法会取出MessageQueue
中的全部Message
对象,然后把消息分发出去。本来准备说一下MessageQueue
的,但是里面太多native
方法了,就不想去看了。那就说一下Message
。其实Message
还是比较简单的,是一个实现了Parcelable
接口的对象。
Message
提供了一个空构造,这个很好,非常容易理解和使用。public Message() {}
,但是这上面注释明确说了,更建议使用obtaion()
方法。
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
可以看出 obtain()
和构造方法没有什么本质的区别,主要是弄了一个静态变量sPool
作为缓存。
然后看一下,
Message
有一个next
字段,这个很有意思,很像那种单链表结构。有一个指针域,指向下一个。
然后Message
有多个obtain()
重载方法,但是实现都差不多。
/**
* Same as {@link #obtain()}, but copies the values of an existing
* message (including its target) into the new one.
* @param orig Original message to copy.
* @return A Message object from the global pool.
*/
public static Message obtain(Message orig) {
Message m = obtain();
m.what = orig.what;
m.arg1 = orig.arg1;
m.arg2 = orig.arg2;
m.obj = orig.obj;
m.replyTo = orig.replyTo;
m.sendingUid = orig.sendingUid;
if (orig.data != null) {
m.data = new Bundle(orig.data);
}
m.target = orig.target;
m.callback = orig.callback;
return m;
}
/**
* Same as {@link #obtain()}, but sets the value for the target member on the Message returned.
* @param h Handler to assign to the returned Message object's target member.
* @return A Message object from the global pool.
*/
public static Message obtain(Handler h) {
Message m = obtain();
m.target = h;
return m;
}
/**
* Same as {@link #obtain(Handler)}, but assigns a callback Runnable on
* the Message that is returned.
* @param h Handler to assign to the returned Message object's target member.
* @param callback Runnable that will execute when the message is handled.
* @return A Message object from the global pool.
*/
public static Message obtain(Handler h, Runnable callback) {
Message m = obtain();
m.target = h;
m.callback = callback;
return m;
}
/**
* Same as {@link #obtain()}, but sets the values for both target and
* what members on the Message.
* @param h Value to assign to the target member.
* @param what Value to assign to the what member.
* @return A Message object from the global pool.
*/
public static Message obtain(Handler h, int what) {
Message m = obtain();
m.target = h;
m.what = what;
return m;
}
大体都是一样的,只是有参数的obtain(args);
就会把参数赋值给成员变量。
然后看一下其中的一个recycle()
方法,看看里面到底做了什么?
/**
* Return a Message instance to the global pool.
*
* You MUST NOT touch the Message after calling this function because it has
* effectively been freed. It is an error to recycle a message that is currently
* enqueued or that is in the process of being delivered to a Handler.
*
*/
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
}
return;
}
recycleUnchecked();
}
/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
可以看到这里把所有的成员变量全部置空了,然后把next
设置为sPool
,然后把sPool
设置为this
了。
那么,sPool
是什么呢?
在 obtain()
里面可以看到:
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
但是第一个调用obtain()
肯定不会走if
的逻辑,那么此时,sPool=null
,而且 sPool
是私有的,所有sPool
的赋值只能发生在recycleUnchecked()
这里了,这里赋值肯定不会为空,肯定是一个实实在在的 Message
对象了。那么下次obtain()
的时候,就会走if
逻辑了。这时候,就是返回上次保存在sPool
中的对象了,这个对象其实也就是当前对象this
。
这里也可以看出
obtain()
和一般单例模式的对象获取是不同的,并不是第一个new
,第二次用之前的;而是非要等调用过recycle()
之后,才能真的实现复用。
然后看一下sendToTarget()
:
/**
* Sends this Message to the Handler specified by {@link #getTarget}.
* Throws a null pointer exception if this field has not been set.
*/
public void sendToTarget() {
target.sendMessage(this);
}
这个方法也是很有用的,平常使用中就会用到这个的。但是实现很简单,就是调用Handler
的sendMessage(msg)
方法。这里也可以看出,如果之前不是通过obtain(Handler h,xxx)
来创建Message
对象的,或者之前没有主动调用过setTarget(handler)
,那么这个方法就会出现空指针异常。
大体上就说这些吧,关于与MessageQueue
结合的部分,后续应该会看。