windows下TensorFlow完整安装流程及出错解决方案

一.安装python

1、通过Pip在Windows上安装Python

TensorFlowWindows上只支持64位Python3.5,可以通过Python 3.5 from python.org下载并安装Python3.5.2(注意选择正确的操作系统)。

或者通过https://www.python.org/downloads选择3.5的任意版本。

2、设置环境变量

上一步安装时,如果勾选了“自动配置环境变量”操作,即:在cmd中输入pip,如果找到了该命令,则可省去该步骤。

若在cmd中输入pip找不到该命令,则需要将Python安装路径下“%安装路径%\Scripts”添加到Path下;再到cmd中输入pip看到若干命令提示,则代表python安装成功(Python安装包自带pip)。“开始”->“所有程序”,也可以找到Python终端。

参考自:http://blog.csdn.net/include1224/article/details/53452824

二.cuda以及cudnn的安装

TensorFlow分为CPU版和GPU版,如果你打算安装GPU版,请先安装如下两个驱动:

1、CUDA安装:https://developer.nvidia.com/cuda-downloads

windows下TensorFlow完整安装流程及出错解决方案_第1张图片

2、CuDNN安装:https://developer.nvidia.com/cudnn(要注册Nvidia用户,并加入CuDNN开发组,填若干问卷就可以下载了)选择下载版本时要注意和Cuda版本匹配。

解压后覆盖至CUDA的安装目录下

例如:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\

三、安装tensorflow

我安装的是GPU版本。

windows不支持pip在线安装。即不支持:pip install tensorflow-gpu该命令。

两种方法安装tensorflow

1.手动下载tensorflow gpu版本文件:

tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl

下载网址:https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-0.12.1-cp35-cp35m-win_amd64.whl

下载完成后,打开cmd,切换到安装文件目录,输入:

pip install tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl

即可成功安装。

windows下TensorFlow完整安装流程及出错解决方案_第2张图片

2.输入pip命令

pip install --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-0.12.1-cp35-cp35m-win_amd64.whl

参考自tensorflow官网:https://www.tensorflow.org/versions/r0.12/get_started/os_setup#pip_installation_on_windows

mac和linux可另行参考网上教程。

四、测试

测试是否安装成功。

1.问题一

import tensorflow as tf

导入tensorflow时出现错误:

“Couldn't open CUDA library cudnn64_5.dll”

windows下TensorFlow完整安装流程及出错解决方案_第3张图片

找到解决方案:

安装时没有注意cudnn版本要求,下载安装了cudnnv6.0,安装完后自己查找文件,只有cudnn64_6.dll,没有cudnn64_5.dll。


windows下TensorFlow完整安装流程及出错解决方案_第4张图片

解决方案为将cudnnV6.0替换为cudnnV5.1即可。

即重新下载cudnn5.1版本。[https://developer.nvidia.com/rdp/cudnn-download](https://developer.nvidia.com/rdp/cudnn-download "cudnn下载地址")


windows下TensorFlow完整安装流程及出错解决方案_第5张图片

解决方案来自:http://blog.csdn.net/suo_ivy/article/details/70445103](http://blog.csdn.net/suo_ivy/article/details/70445103

替换完成后,该错误消失。

2、问题二


windows下TensorFlow完整安装流程及出错解决方案_第6张图片

执行tf.Session()的时候,出现如下提示:

Could not identify NUMA node of /job:localhost/replica:0/task:0/gpu:0, defaulting to 0.  Your kernel may not have been built with NUMA support.`

不过这并不影响最终结果的执行。(只是个警告)

网上找到相关说明:http://blog.csdn.net/baixiaozhe/article/details/54598346

可供参考一下。

大体上的意思是:只要我们不是使用多GPU,这个警告应该是可以忽略的,所以我们目前也不需要担心了。

至此,tensorflow 测试完成,并成功运行了测试样例。

你可能感兴趣的:(windows下TensorFlow完整安装流程及出错解决方案)