【r<-基础|流程|方案】数据处理难题的一套解决方案

我们来解决这样一个问题:将学生的各科考试成绩组合为单一的成绩衡量制表,基于相对名次给出从A到F的评分,根据学生姓氏和名称的首字母对花名册进行排序。

# 数据输入
> options(digits=2)  # 限制输出小数点后数字的位数
> Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose", "David Jones", "Janice Markhammer", "Cheryl Cushing", "Reuven Ytzrhak", "Greg Knox", "Joel England", "Mary Rayburn")
> Math <- c(502, 600, 412, 358,  495, 512, 410, 625, 573, 532)
> Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)
> English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)
> roster <- data.frame(Student, Math, Science, English, stringsAsFactors = FALSE)
> roster
             Student Math Science English
1         John Davis  502      95      25
2    Angela Williams  600      99      22
3   Bullwinkle Moose  412      80      18
4        David Jones  358      82      15
5  Janice Markhammer  495      75      20
6     Cheryl Cushing  512      85      28
7     Reuven Ytzrhak  410      80      15
8          Greg Knox  625      95      30
9       Joel England  573      89      27
10      Mary Rayburn  532      86      18

# 将各科成绩标准化(用单位标准差表示),用scale()函数实现
> z <- scale(roster[, 2:4])
> z
         Math Science English
 [1,]  0.0011   1.078   0.587
 [2,]  1.1276   1.591   0.037
 [3,] -1.0333  -0.847  -0.697
 [4,] -1.6540  -0.590  -1.247
 [5,] -0.0793  -1.489  -0.330
 [6,]  0.1161  -0.205   1.137
 [7,] -1.0563  -0.847  -1.247
 [8,]  1.4149   1.078   1.504
 [9,]  0.8172   0.308   0.954
[10,]  0.3460  -0.077  -0.697
attr(,"scaled:center")
   Math Science English 
    502      87      22 
attr(,"scaled:scale")
   Math Science English 
   87.0     7.8     5.5 

# 求各行的均值以获得综合得分
> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)
> roster
             Student Math Science English score
1         John Davis  502      95      25  0.56
2    Angela Williams  600      99      22  0.92
3   Bullwinkle Moose  412      80      18 -0.86
4        David Jones  358      82      15 -1.16
5  Janice Markhammer  495      75      20 -0.63
6     Cheryl Cushing  512      85      28  0.35
7     Reuven Ytzrhak  410      80      15 -1.05
8          Greg Knox  625      95      30  1.33
9       Joel England  573      89      27  0.69
10      Mary Rayburn  532      86      18 -0.14

# 用quantile()函数计算学生综合得分的百分位数
> y <- quantile(roster$score, c(.8,.6,.4,.2))
> y
  80%   60%   40%   20% 
 0.74  0.43 -0.34 -0.90 

# 按照百分位数排名重编码成绩
> roster$grade[score >= y[1]] <- 'A'
> roster$grade[score < y[1] & score >= y[2]] <- 'B'
> roster$grade[score < y[2] & score >= y[3]] <- 'C'
> roster$grade[score < y[3] & score >= y[4]] <- 'D'

> roster$grade[score < y[4] ]<- 'F'
> roster
             Student Math Science English score grade
1         John Davis  502      95      25  0.56     B
2    Angela Williams  600      99      22  0.92     A
3   Bullwinkle Moose  412      80      18 -0.86     D
4        David Jones  358      82      15 -1.16     F
5  Janice Markhammer  495      75      20 -0.63     D
6     Cheryl Cushing  512      85      28  0.35     C
7     Reuven Ytzrhak  410      80      15 -1.05     F
8          Greg Knox  625      95      30  1.33     A
9       Joel England  573      89      27  0.69     B
10      Mary Rayburn  532      86      18 -0.14     C


# 以空格为界将姓名拆分
> name <- strsplit((roster$Student), " ")
> name
[[1]]
[1] "John"  "Davis"

[[2]]
[1] "Angela"   "Williams"

[[3]]
[1] "Bullwinkle" "Moose"     

[[4]]
[1] "David" "Jones"

[[5]]
[1] "Janice"     "Markhammer"

[[6]]
[1] "Cheryl"  "Cushing"

[[7]]
[1] "Reuven"  "Ytzrhak"

[[8]]
[1] "Greg" "Knox"

[[9]]
[1] "Joel"    "England"

[[10]]
[1] "Mary"    "Rayburn"

# 分别将姓名存储,并去掉无用的student列。"["是一个可以用来提取某个对象的一部分的函数
> Firstname <- sapply(name, "[", 1)
> Lastname <- sapply(name, "[", 2)
> roster <- cbind(Firstname, Lastname, roster[, -1])
> roster
    Firstname   Lastname Math Science English score grade
1        John      Davis  502      95      25  0.56     B
2      Angela   Williams  600      99      22  0.92     A
3  Bullwinkle      Moose  412      80      18 -0.86     D
4       David      Jones  358      82      15 -1.16     F
5      Janice Markhammer  495      75      20 -0.63     D
6      Cheryl    Cushing  512      85      28  0.35     C
7      Reuven    Ytzrhak  410      80      15 -1.05     F
8        Greg       Knox  625      95      30  1.33     A
9        Joel    England  573      89      27  0.69     B
10       Mary    Rayburn  532      86      18 -0.14     C

# 用order()函数进行排序
> roster[order(Lastname, Firstname), ]
    Firstname   Lastname Math Science English score grade
6      Cheryl    Cushing  512      85      28  0.35     C
1        John      Davis  502      95      25  0.56     B
9        Joel    England  573      89      27  0.69     B
4       David      Jones  358      82      15 -1.16     F
8        Greg       Knox  625      95      30  1.33     A
5      Janice Markhammer  495      75      20 -0.63     D
3  Bullwinkle      Moose  412      80      18 -0.86     D
10       Mary    Rayburn  532      86      18 -0.14     C
2      Angela   Williams  600      99      22  0.92     A
7      Reuven    Ytzrhak  410      80      15 -1.05     F

将一个函数应用到矩阵的所有行列

> mydata <- matrix(rnorm(30), nrow=6)
> mydata
            [,1]       [,2]       [,3]       [,4]       [,5]
[1,] -0.06125496  0.4988079 -0.2929864 -0.4886596 -1.0619015
[2,]  0.25143001  0.3055695  0.2592611  1.7845242  1.0919724
[3,]  0.69396311  0.5974815 -0.7969848 -0.0540765 -0.9713497
[4,]  0.12294368  1.0399471  2.2633374  0.3299851  0.3274629
[5,]  1.36734800 -0.4483960 -0.5536991 -0.7941322  0.2633292
[6,]  0.13667905  1.7121611  0.7215101  2.0211705  1.8452035
> apply(mydata, 1, mean) # 1 means row
[1] -0.28119891  0.73855144 -0.10619327  0.81673523 -0.03311001
[6]  1.28734486
> apply(mydata, 2, mean) # 2 means col
[1] 0.4185181 0.6175952 0.2667397 0.4664686 0.2491194

你可能感兴趣的:(【r<-基础|流程|方案】数据处理难题的一套解决方案)