- 阿里云力夺 FewCLUE 榜首!知识融入预训练+小样本学习的实战解析
阿里云技术
自然语言处理机器学习
一概述7月8日,中文语言理解权威评测基准CLUE公开了中文小样本学习评测榜单最新结果,阿里云计算平台PAI团队携手达摩院智能对话与服务技术团队,在大模型和无参数限制模型双赛道总成绩第一名,决赛答辩总成绩第一名。中文语言理解权威评测基准CLUE自成立以来发布了多项NLP评测基准,包括分类榜单,阅读理解榜单和自然语言推断榜单等,在学术界、工业界产生了深远影响。其中,FewCLUE是CLUE最新推出的一
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 每周编辑精选|FewJoint 基准数据集上线、科技部监督司发布 AI 新规
人工智能资讯数据集
小样本学习(Few-shotLearning)是指像人类一样能够通过很少的样本来学习掌握新任务。这一领域已经成为机器学习社区的热点,并被认为是推动机器智能接近人类智能的关键方向之一。哈工大推出了FewJoint基准数据集,为NLP小样本评测提供了公共的评价基准。该数据集已在hyper.ai上线,hyper.ai还有更多供中文大模型训练的NLP数据集可以下载哦~一起来看看吧!1月29日-2月2日,h
- 小样本学习系列工作(持续更新)
MingchenS
计算机视觉学习人工智能深度学习计算机视觉python
小样本学习系列工作有关小样本学习的各类文章通常会将其方法分成几个大类:基于度量学习的小样本方法、基于数据增强的小样本学习方法和基于模型初始化的小样本学习方法。我觉得这样分类并不好,因为三种方法之间并不是各自独立存在的,大多数情况下都是有交集的,比如一篇工作可能既使用了元学习的训练策略,同时又在度量方法上进行了创新。因此在梳理工作的时候,还是按照论文的顺序来梳理比较好,每篇工作都有他的特点,其思考的
- 小样本学习
Ada's
系统科学神经科学认知科学通用人工智能基础(语音文本图像等)
github.com/blue-blue272/fewshot-CAN从注意力方面的进展来看自然语言已经和图像在算法底层通用以下方法可能对小样本有帮助:
- 科大讯飞将于1月30日发布星火大模型 V3.5,基于全国产化算力底座训练
喜好儿aigc
人工智能科技aigcai
科大讯飞即将发布全新AI大模型——星火认知大模型V3.5,该模型将于14:00正式发布。据透露,相比于去年10月24日发布的V3.0版本,V3.5在逻辑推理、文本生成、数学答题及小样本学习能力上均实现了显著提升。科大讯飞官网链接:讯飞星火认知大模型-AI大语言模型-星火大模型-科大讯飞AI工具专区:+AI工具-喜好儿aigc科大讯飞股份有限公司是中国领先的人工智能企业,自1999年成立以来,专注于
- 【机器学习一百问 01】 迁移学习和小样本学习的本质不同是什么?
坚果仙人
机器学习机器学习迁移学习学习
注:这些只是个人理解,如有质疑可提问讨论!迁移学习和小样本学习都是机器学习领域的重要分支,它们虽然有一些交集,但在目的和核心方法上存在本质的不同:目的和焦点:迁移学习:其主要目的是利用在一个或多个源任务上获得的知识,来改善或加速对新任务的学习过程。迁移学习的核心在于“知识转移”,它不特定于数据量的多少。小样本学习:其核心挑战是如何在非常少量的数据(即小样本)上实现有效的学习。小样本学习特别关注于如
- CVPR19-Few-shot
vieo
CVPR19-Few-shot本文主要总结了CVPR2019的few-shot的文章,主要从motivation,具体方法上进行总结。小样本学习:训练中可以使用各类样本,但是测试时,面对新的类别(通常为5类),每类只有极少量的标注样本,以及来自相同类别的查询图像。基于度量的方法(在原型网络,图卷积的基础上改进)RevisitingLocalDescriptorbasedImage-to-Class
- 小样本学习(FSL)和元学习、数据增强和对比学习各自的概念和相互关系
Chowley
机器学习深度学习自然语言处理lstmchatgpt
前言最近一周在做简历和投递,想找个暑假的实习岗,有几个过了初筛,今天围绕我的简历讲解一下里面的科研经历和方向推荐,也是给自己做一个总结。去年疫情开始,取消线下课程和考试,我闲着没事,就搞起了研究,很巧的是和ChatGPT时间重叠了,当时因为网上全是防治疾病的,我也就错过了ChatGPT的黄金期,不然没准就是搞NLP了,今天我也请GPT4.0一同创作,看能不能给这篇博客带来不一样的火花。小样本学习F
- 小样本学习综述
雪夜的星_e40c
小样本学习(Few-shotLearning)综述摘要:人类非常擅长通过极少量的样本识别一个新物体,比如小孩子只需要书中的一些图片就可以认识什么是“斑马”,什么是“犀牛”。在人类的快速学习能力的启发下,研究人员希望机器学习模型在学习了一定类别的大量数据后,...分类非常常见,但如果每个类只有几个标注样本,怎么办呢?笔者所在的阿里巴巴小蜜北京团队就面临这个挑战。我们打造了一个智能对话开发平台--Di
- 小样本学习介绍(超详细)
s_m_c
计算机视觉学习人工智能深度学习计算机视觉
小样本学习介绍本文首先介绍了什么是小样本学习,其次介绍了为什么小样本学习的很多文章都采用元学习的方法。目的是通过通俗的解释更加清楚的介绍小样本学习是什么,适合初学者的入门。当然,以下更多的是自己的思考,欢迎交流。什么是小样本学习?当我开始接触“小样本”这个术语的时候,给我的第一感觉就是他的数据集很小(这也是我入坑小样本学习最开始的原因,以为炼丹不需要太久),相信很多人有个同样的感觉,但是事实上并不
- 【深度学习:Few-shot learning】理解深入小样本学习中的孪生网络
jcfszxc
深度学习知识库深度学习学习人工智能
【深度学习:Few-shotlearning】理解深入小样本学习中的孪生网络深入理解孪生网络:架构、应用与未来展望小样本学习的诞生元学习小样本学习孪生网络的基本概念孪生网络的细节TripletLoss架构特点关键组件训练过程主要应用领域未来展望示例图片结论备注:本篇博客中有部分图片由GPT生成深入理解孪生网络:架构、应用与未来展望在人工智能和机器学习的领域中,**孪生网络(SiameseNetwo
- 【论文阅读笔记】One-Shot Relational Learning for Knowledge Graphs - EMNLP 2018
卷卷0v0
论文阅读知识图谱论文阅读知识图谱神经网络
知识图谱-->知识补全-->长尾问题-->元关系学习基于度量的方法(本文)基于优化的方法文章目录Abstract1Introduction2RelatedWork关系学习的嵌入模型小样本学习3Background3.1问题定义3.2One-Shot学习设置4Model4.1邻居编码器4.2匹配处理器4.3损失函数和训练5Experiments5.1数据集5.2实施细节5.3结果关于模型选择的备注5
- 小样本学习idea(不断更新)
s_m_c
学习
在此整理并记录自己的思考过程,其中不乏有一些尚未成熟或者尚未实现的idea,也有一些idea实现之后没有效果或者正在实现,当然也有部分idea已写成论文正在投稿,都是自己的一些碎碎念念的思考,欢迎交流。研一上学期9.18现有思路:1.用pretrain好的MAE,采用不同的遮挡方式(或者遮挡比例,固定或者不固定,随机或者block-wise),生成不同遮挡方式下的特征,相当于单张图片的样本扩充。2
- 论文解读:Exploring Complementary Strengths of Invariant and Equivariant Representations
十有久诚
深度学习人工智能
小样本学习论文解读:ExploringComplementaryStrengthsofInvariantandEquivariantRepresentationsforFew-ShotLearning摘要teach:这篇文章尽管标题带小样本学习,但是并没有设计一套小样本学习的算法,而是用一种数据增强或者数据增广的方式生成更多的样本。通过样本之间的训练或者学习来去提升这个模型的泛化能力。用积累的数据
- CVPR 2023 精选论文学习笔记:Meta-Tuning Loss Functions and Data Augmentation for Few-Shot Object Detection
结构化文摘
学习笔记目标检测人工智能计算机视觉深度学习
我们给出以下四个分类标准:1.学习方法元学习:元学习是一种学习范式,旨在教模型如何快速学习新任务。在小样本学习的背景下,元学习算法在各种任务上进行训练,每个任务只有少数示例。这允许模型学习如何调整其学习过程以适应新任务,即使这些任务与它以前见过的任务非常不同。数据增强:数据增强是一种通过对现有数据应用转换来生成新训练数据的技术。这对于小样本学习来说可以是一种有用的技术,因为它可以帮助增加可用训练数
- 基于小样本学习的SAR图像识别
吧啦_吧啦
姓名:刘倩学号:19021210889【嵌牛导读】:对于SAR图像目标识别,目前研究人员是基于大样本进行建模和研究,而对于小样本条件下的SAR图像目标识别,只有少部分人开展了研究,并且与大样本数据相比较,其识别准确率较低。针对这一问题提出了一种新的算法——卷积自编码器算法。该方法能自动识别小样本图像中的有效特征,提高识别准确率。【嵌牛鼻子】:小样本学习,深度学习,卷积神经网络,自编码器【嵌牛提问】
- 分布式系统-拜占庭将军问题-通信协议
TBYourHero
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019什么是拜占庭将军问题?在很久很久以前,拜占庭是东罗马帝国的首都。那个时候罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信使传递消息。在打仗的时候,
- 目标检测||速览
TBYourHero
深度学习objectdetection
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019目录一:基础概念二:两种方法2.1两阶段法R-CNNSPPNetFastR-CNNPFNMaskR-CNN2.2一阶段法YOLOSSDDSSDRetinaNet总结一:基础概念
- 小样本学习在图像识别中的挑战与突破
matlabgoodboy
学习
小样本学习(Few-ShotLearning)是一种机器学习方法,旨在从很少的样本中学习并做出准确的预测。在图像识别领域,小样本学习面临一些挑战,同时也涌现出一些突破性的解决方法。挑战:缺乏数据:小样本学习的主要挑战之一是样本数量有限,这使得传统深度学习模型难以学习足够的特征。过拟合:由于样本少,模型容易过拟合,即在训练样本上表现良好,但在未见过的数据上表现不佳。领域差异:在小样本学习中,模型需要
- FusionDiff:第一个基于扩散模型实现的多聚焦图像融合的论文
ctrl A_ctrl C_ctrl V
#多聚焦图像融合算法深度学习计算机视觉人工智能
文章目录1.论文介绍2.研究动机3.模型结构3.1网络架构3.2前向扩散过程3.3逆向扩散过程3.4训练和推理过程4.小样本学习4.实验结果1.论文介绍题目:FusionDiff:Multi-focusimagefusionusingdenoisingdiffusionprobabilisticmodels作者:MiningLi,中国科学技术大学录用期刊:ExpertSystemswithAppl
- 从技术到科学,中国AI向何处去?
人工智能学家
大数据编程语言机器学习人工智能深度学习
来源:科学网编辑:宗华排版:华园作者:金榕(阿里巴巴达摩院副院长、原密歇根州立大学终身教授)●AI时代序幕刚拉开,AI目前还处于初级阶段,犹如法拉第刚刚发现了交流电,还未能从技术上升为科学。●以深度学习为代表的AI研究这几年取得了诸多令人赞叹的进步,但部分也是运气的结果,其真正原理迄今无人知晓。●在遇到瓶颈后,深度学习有三个可能突破方向:深度学习的根本理解、自监督学习和小样本学习、知识与数据的有机
- SVM实现小尺寸图片分类
余生的观澜
计算机视觉KingofCVpython技术栈支持向量机机器学习分类
问题背景在工业识别的场景中,经常会遇到误判与误识别,所以最后输出的结果,需要再通过N分类算法去过滤一遍,确保识别到的物体,是我们想要的,能实现这个方案有很多,传统机器学习与深度神经网络都可以做到,传统机器学习,比如SVM,决策树,深度神经网络,从最简单的卷积到resnet,小样本学习,迁移学习,都可以实现。本文通过SVM对算法进行封装,实现一个图片的分类。参考资料https://blog.csdn
- 《Learning to Compare: Relation Network for Few-Shot Learning》
Lucifer_75d2
一、Introduction深度学习模型在视觉识别任务中取得了巨大的成功。然而,这些监督学习模型需要大量的标记数据和许多迭代来训练它们大量的参数。由于标注成本的原因,这严重限制了它们对新类的可拓展性,但从根本上限制了它们对新出现的或是很少出现的类的适用性。在这些类别中,大量注释的图像可能根本不存在。相比之下,人类在几乎没有直接监督或根本没有监督的情况下却非常擅长识别物体,例如小样本学习或零样本学习
- GPT系列发展及技术:GPT1到GPT3的发展,InstructGPT的RLHF流程,GPT4
榴莲_
gptchatgpttransformer语言模型自然语言处理
目录GPT系列前言Transformertransformer的代码实现Transformer位置编码具体结构BERT--EncoderGPT--Decoder微调方法--fine-tuningVSPromptingGPT1-GPT3GPT1预训练+微调1、无监督预训练2、有监督微调对子任务构造不同数据输入和bert对比GPT2-语言模型是多任务的学习器小样本学习GPT3动机数据集Instruct
- Optimization as a model for few-shot learning||论文阅读
TBYourHero
深度学习paperreading小样本学习
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019介绍:对Few-shotlearning中的优化进行建模本文通过将SGD更新规则解释为具有可训练参数的门控递归模型,描述了一种新的元学习方法。这个想法对于迁移学习相关的研究来说
- 小样本学习的k-way n-shot
TBYourHero
深度学习
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019如下图简单理解一下小样本的训练方式:Training(训练模型)SampleSetQuerySetTesting(测试模型)SupportSetTestSet(无label)训
- 贝叶斯网络
TBYourHero
math
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019作者:Bioquan链接:https://www.jianshu.com/p/9d3a91cb2117来源:简书概率论只不过是把常识用数学公式表达了出来。——拉普拉斯记得读本科
- 小样本学习论文总结(few-shot learning)
亨利庞加莱
2015Koch,Gregory,RichardZemel,andRuslanSalakhutdinov."Siameseneuralnetworksforone-shotimagerecognition."ICMLDeepLearningWorkshop.Vol.2.2015.[paper]2016Ravi,Sachin,andHugoLarochelle."Optimizationasamod
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d