GRU - 文本情感分类

代码在 给一个拥抱 上
网络结构

inp = Input(shape=(maxlen,))
x = Embedding(max_features, embed_size)(inp)
x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
x = GlobalMaxPool1D()(x)
x = Dense(16, activation="relu")(x)
x = Dropout(0.1)(x)
x = Dense(1, activation="sigmoid")(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=[auc])
print(model.summary())
Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 70) 0
embedding_1 (Embedding) (None, 70, 300) 28500000
bidirectional_1 (Bidirectional) (None, 70, 128) 140544
global_max_pooling1d_1(GlobalMaxPool1D) (None, 128) 0
dense_1 (Dense) (None, 16) 2064
dropout_1 (Dropout) (None, 16) 0
dense_2 (Dense) (None, 1) 17
Total params 28,642,625
Trainable params 28,642,625
Non-trainable params 0

你可能感兴趣的:(tensorflow实战)