- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- python下报错AttributeError: 'NoneType' object has no attribute 'shape'
无止境x
路径问题:config.TRAIN.hr_img_path=r'D:\SR_datasets\DIV2K\DIV2K_train_HR/'#最后还要加一个/斜杠
- 【ML】支持向量机SVM及Python实现(详细)
2401_84009698
程序员支持向量机python算法
fromsklearn.preprocessingimportStandardScalerfrommatplotlib.colorsimportListedColormapfromsklearn.svmimportSVC###2.1加载数据样本加载样本数据及其分类标签iris=datasets.load_iris()X=iris.data[:,[2,3]]#按花瓣划分#X=iris.data[:,
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- 深度学习目标检测入门COCO数据集
日暮途远z
深度学习目标检测人工智能
常见数据集类型:COCO数据集:Pytorch加载COCO数据集:COCO数据集的读取COCO_dataset=torchvision.datasets.CocoDetection(root="./dataset/val2017",annFile="./instances_val2017/instances_val2017.json")root(strorpathlib.Path)–Rootdir
- 【Python报错】已解决ModuleNotFoundError: No module named datasets
云天徽上
python运行报错解决记录numpy数据库pandas机器学习
成功解决“ModuleNotFoundError:Nomodulenameddatasets”错误的全面指南在Python编程中,遇到ModuleNotFoundError:Nomodulenameddatasets这样的错误通常意味着Python解释器无法找到名为datasets的模块。datasets是一个流行的Python库,常用于加载和处理大型数据集,特别是在自然语言处理(NLP)和机器学
- COCO8 dataset 每种代表什么
西柚与蓝莓
pytorchopencv
#UltralyticsYOLO,AGPL-3.0license#COCO8dataset(first8imagesfromCOCOtrain2017)byUltralytics#Documentation:https://docs.ultralytics.com/datasets/detect/coco8/#Exampleusage:yolotraindata=coco8.yaml#parent
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- Datawhale AI夏令营第五期CV Task01
m0_60530253
人工智能
一、报名参加2024大运河杯数据开发大赛1.登录赛事平台2.修改昵称,实名认证3.打开比赛链接报名参赛4.修改队伍名称二、领取厚德云支持的GPU在线算力!(点击即可跳转)三、体验baseline1.下载baseline相关文件aptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datasets/Datawhale/AI_C
- pyskl/datasets/pipelines/heatmap_related.py
鱼儿会飞吗
pythonnumpy开发语言
classGeneratePoseTarget:首先看def__call__(self,results):def__call__(self,results):heatmap=self.gen_an_aug(results)key='heatmap_imgs'if'imgs'inresultselse'imgs'ifself.double:indices=np.arange(heatmap.shap
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- 深度学习五种不同代码实现,神经网络,机器学习
学呗~那不然呢
pycharm
第一种importnumpyasnpimporttensorflowastfmnist=tf.keras.datasets.mnistimportmatplotlib.pyplotaspltimportmatplotlibmatplotlib.use("TkAgg")(x_train,y_train),(x_test,y_test)=mnist.load_data()x_train=x_train
- Python_pytorch(五)模型训练
Han Gang
pythonpytorch深度学习
反向传播LossFunctionimporttorchvisionfromtorchimportnnfromtorch.nnimportFlattenfromtorch.utils.dataimportDataLoaderdataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transform
- C# OpenVino Yolov8 Pose 姿态识别
乱蜂朝王
人工智能c#openvinoYOLO
目录效果模型信息项目代码下载效果模型信息ModelProperties-------------------------date:2023-09-07T17:11:43.091306description:UltralyticsYOLOv8n-posemodeltrainedon/usr/src/app/ultralytics/datasets/coco-pose.yamlauthor:Ultra
- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 运行《tensorflow21天》的warning
guxue365
AI
在运行第一章的时候所出现得提示信息wt@wt-desktop:~/software/AI/chapter_1$pythondownload.pyWARNING:tensorflow:Fromdownload.py:5:read_data_sets(fromtensorflow.contrib.learn.python.learn.datasets.mnist)isdeprecatedandwill
- python代码进行图像配准
@爱编程的郭同学
pythonopencv开发语言
这段代码演示了如何使用ORB特征检测器和特征匹配来进行图像配准。图像配准是将两幅图像对齐,使得它们在同一空间中表现出相似的视觉内容。一、效果图展示二、代码importcv2importnumpyasnp#读取两张图像#image1是RGBimage2是高光谱相机拍的伪RGB#iamge1和iamge2尺寸可以是不一样的image1=cv2.imread('datasets/image/ccc.bm
- PyTorch – 逻辑回归
一个高效工作的家伙
pythonpytorch逻辑回归人工智能
data首先导入torch里面专门做图形处理的一个库,torchvision,根据官方安装指南,你在安装pytorch的时候torchvision也会安装。我们需要使用的是torchvision.transforms和torchvision.datasets以及torch.utils.data.DataLoader首先DataLoader是导入图片的操作,里面有一些参数,比如batch_size和
- 基于ORB-SLAM2与YOLOv8剔除动态特征点
笨小古
SLAM学习SLAMYOLOYOLOv8
基于ORB-SLAM2与YOLOv8剔除动态特征点以下方法以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据集进行实验测试APE首先在不剔除动态特征点的情况下进行测试:方法1:segment坐标点集合逐一排查剔除利用YOLOv8的segment获取动态对象(这里指人person)所在
- 谷歌地球引擎(GEE)中公开免费的扩展包介绍(汇总)
此星光明
GEE学习专栏python开发语言geejavascript扩展
此页面包含地球引擎开发人员社区生成的资源集合。您将找到将EarthEngine扩展到新环境、增强可操作性和简化工作流的库和模块,以及教程、脚本、博客和社区托管的数据集。https://developers.google.com/earth-engine/tutorials/community/developer-resources#datasets扩展将EarthEngine扩展到QGIS、R和P
- 真、开源LLM-OLMo
choose_c
大模型LLM
论文:https://arxiv.org/pdf/2402.00838.pdfWeightshttps://huggingface.co/allenai/OLMo-7BCodehttps://github.com/allenai/OLMoDatahttps://huggingface.co/datasets/allenai/dolmaEvaluationhttps://github.com/all
- h5文件的读取(h5py、scanpy)
拜托啦!狮子
python
1.h5文件简介HDF:hierarchicaldataformat层次数据格式-h5文件中有两个核心概念:group和datasets--group包含了其它groups和datasets,像字典一样工作(类似目录)--dataset即numpy.ndarray,像numpy数组一样工作(类似文件)2.使用python处理h5(h5py)importh5pywithh5py.File('file
- MIT-BEVFusion系列五--Nuscenes数据集详细介绍,有下载好的图片
端木的AI探索屋
bevfusion自动驾驶算法python人工智能目标检测
一、数据集部分mmdetection官方对Nuscenes的中文解释地址:https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.htmlhttps://www.nuscenes.org/nuscenes#data-format1.1数据集概述 nuScenes数据集(pronou
- kaggle实战图像分类-Intel Image Classification(附源码)
橘柚jvyou
分类人工智能pytorch计算机视觉深度学习
目录前言数据集加载定义网络训练网络验证网络前言本篇文章会讲解一个使用pytorch这个深度学习框架完成一个kaggle上的图像分类任务。主要会介绍如何加载数据集,导入网络训练数据,保存损失,精度变化曲线和最终模型,以及测试模型在验证集上的好坏。其数据集介绍可以看一下kaggle的网址,这里就不过多介绍。数据集来源:https://www.kaggle.com/datasets/puneet6060
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- TensorFlow版本的HelloWord
何小有
下面是TensorFlow官网提供的一个入门代码,对于一个机器学习的新手来说,好难呀,所以下面就只能一行一行的来理解了。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()x_train,x_test=x_train/255.0,x_test/255.
- 20天吃pytorch 1-2 图片数据建模流程遇到问题及分析
七月的和弦
深度学习pytorch学习深度学习
学习内容:1-2图片数据建模流程如下1、datasets.ImageFolder图片数据加载,然后送入Dataloader做一个数据管道2、nn.Module基类构建自定义模型3、模型训练步骤4、模型训练评估遇到问题与解决方案:实例化datasets.ImageFolder类后,为什么可以对其进行遍历,对其遍历的结果为什么是img和label?因为它继承了DatasetFolder,这个父类中__
- 一些运行指令_无用草稿
Selvaggia
深度学习
nvidia-smi/data1/xyj/datasets/suzhou/images/ocr_en_422k/data1/xyj/datasets/suzhou/images/ocr_zh_230920_381kstart_time=time.time()print(“\nloading_time:{:.2f}s\n”.format(time.time()-start_time))start_t
- yolov5数据增强避免目标残缺的代码处理
猫猫与橙子
目标检测论文分享代码复现YOLO人工智能深度学习
在训练小目标检测的时候,yolov5数据常用的增强会导致目标残缺,特别是对文字目标进行检测的时候,增强导致文字目标残缺后,训练出的模型常常会出现误检,将部分笔画检测出文字;所以就对目标中的数据增强后的结果做了合适的处理:替换代码包括(utils/datasets.pyutils/datasets.pyline755):#---原始代码--begin#forxin(labels4[:,1:],*se
- R语言学习case10:ggplot基础画图Parallel Coordinate Plot 平行坐标图
早起CaiCai
R语言r语言学习开发语言数据可视化
step1:导入ggplot2库文件library(ggplot2)step2:带入自带的iris数据集iris<-datasets::irisstep3:查看数据信息dim(iris)维度为[150,5]head(iris)查看数据前6行的信息step4:利用ggplot工具包绘图plot5<-ggparcoord(data=iris,columns=1:4,groupColumn="Speci
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比