- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- Python Day56
别勉.
python机器学习python开发语言
Task:1.假设检验基础知识a.原假设与备择假设b.P值、统计量、显著水平、置信区间2.白噪声a.白噪声的定义b.自相关性检验:ACF检验和Ljung-Box检验c.偏自相关性检验:PACF检验3.平稳性a.平稳性的定义b.单位根检验4.季节性检验a.ACF检验b.序列分解:趋势+季节性+残差记忆口诀:p越小,落在置信区间外,越拒绝原假设。1.假设检验基础知识a.原假设与备择假设原假设(Null
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 假设检验:统计推断的决策艺术
Algo-hx
概率论与数理统计概率论
目录引言8假设检验8.1假设检验的基本原理8.1.1核心概念框架8.1.2假设形式8.2检验的两类错误8.2.1错误类型矩阵8.2.2错误概率关系8.3单正态总体参数检验8.3.1均值μ的检验8.3.2方差σ²的检验8.4双正态总体参数检验8.4.1均值差检验8.4.2方差比检验8.5P值:检验的客观度量8.5.1P值定义8.5.2决策规则8.5.3P值解读引言假设检验是统计学的’审判法庭’——通
- P值、置信度与置信区间的关系:统计推断的三大支柱
进一步有进一步的欢喜
p值置信度置信区间统计学显著性水平
目录引言一、P值是什么?——假设检验的“证据强度”1.1定义1.2判断标准:显著性水平α\alphaα(阿尔法)1.3示例说明二、置信区间与置信度:参数估计的“不确定性范围”2.1置信区间的定义2.2置信度的含义三、显著性水平α\alphaα与置信度1−α1-\alpha1−α的互补关系3.1数学上的互补关系3.2实际意义四、P值vs置信区间:本质不同但逻辑相通五、P值与置信区间的数学联系5.1举
- 机器学习的数学基础:假设检验
爱数学的小理
数学机器学习的数学基础数学建模机器学习数学
假设检验默认以错误率为性能度量,错误率由下式给出:E(f,D)=∫x∼DII(f(x)≠y)p(x)dxE(f,\mathcal{D})=\int_{\boldsymbol{x}\sim\mathcal{D}}\mathbb{II}(f(\boldsymbol{x})\ney)p(\boldsymbol{x})\text{d}\boldsymbol{x}E(f,D)=∫x∼DII(f(x)=y)
- 北斗导航 | 接收机自主完好性监测算法如何与机器学习,深度学习等结合,提高故障星检测识别精度
单北斗SLAMer
卫星导航机器学习深度学习算法
将机器学习(ML)和深度学习(DL)与接收机自主完好性监测(RAIM)算法相结合,是提高卫星导航系统(如GPS、北斗、Galileo等)故障检测与识别精度的重要前沿方向。传统RAIM主要基于几何分布和统计假设检验(如最小二乘残差法、奇偶矢量法),在复杂环境(城市峡谷、强多径、低可见星数)或新型故障(缓慢偏移、间歇性故障)下存在局限性。ML/DL能有效弥补这些不足,提升检测性能。以下是主要的结合方式
- 数据分析中假设检验_假设检验数据科学
weixin_26705651
python数据分析大数据人工智能java
数据分析中假设检验UsingInferentialStatistics,welearnedhowtoanalyzethesampledataandmakeinferencesaboutthepopulationmeanandotherpopulationdata.However,wecouldnotconfirmtheconclusionswemadeaboutthepopulationdata.
- 折线图标注显著性差异分析_「SPSS数据分析」SPSS非参数假设检验(3)单样本K-S检验...
冯爽妹
折线图标注显著性差异分析
单样本K-S检验是一种针对单个变量的数据分布进行的探索类别的检验方法。它不需要将数据分组,直接对原始数据的n个观测值进行检验,单样本K-S检验主要用于连续型数据。其中可检验分布类别有正态分布、平均分布、泊松分布、指数分布等。通常用到最多的就是检验是否服从正常性分布。下面,我们通过实际案例来详细讲解单样本K-S检验数据是否符合正态分布。我们搜集了472例减肥前体重数据,检验该数据整体上是否服从正态性
- 【图像处理基石】如何入门AI计算机视觉?
AndrewHZ
图像处理基石人工智能图像处理计算机视觉深度学习AIPyTorch
入门AI计算机视觉需要从基础理论、工具方法和实战项目三个维度逐步推进,以下是系统化的学习路径和建议:一、夯实基础:核心知识储备1.数学基础(必备)线性代数:矩阵运算、特征值分解、奇异值分解(SVD)——理解神经网络中的线性变换。概率论与统计:概率分布、贝叶斯定理、假设检验——支撑模型训练中的不确定性分析。微积分:导数、梯度、链式法则——深度学习优化(如反向传播)的核心。推荐资源:教材:《线性代数及
- 3.5 统计初步
x峰峰
#数学概率论考研
本章系统阐述统计推断理论基础,涵盖大数定律、抽样分布、参数估计与假设检验等核心内容。以下从六个核心考点系统梳理知识体系:考点一:大数定律与中心极限定理1.大数定律切比雪夫不等式:设随机变量XXX的数学期望E(X)=μE(X)=\muE(X)=μ,方差D(X)=σ2D(X)=\sigma^2D(X)=σ2,则对任意ε>0\varepsilon>0ε>0:P{∣X−μ∣≥ε}≤σ2ε2P\{|X-\m
- R语言学习--Day01--数据清洗初了解andR的经典筛选语法
Chef_Chen
学习
当我们在拿到一份数据时,是否遇到过想要分析数据却无从下手?通过编程语言去利用它时发现有很多报错不是来源于代码而是因为数据里有很多脏数据;在这个时候,如果你会用R语言来对数据进行清洗,这会让你的效率提升很多。R语言的典型使用场景统计分析执行假设检验(t检验、卡方检验)、回归分析、方差分析等优势:内置stats包提供100+统计函数,如lm(),aov()数据可视化绘制统计图表(散点图、箱线图、热力图
- 正态分布习题集 · 题目篇
aichitang2024
概率论习题集概率论
正态分布习题集·题目篇全面覆盖单变量正态、多变量正态、参数估计、假设检验、变换以及应用,共20题,从基础到进阶。完成后请移步《答案与解析篇》。1.基础定义与性质(5题)1.1密度函数写出正态分布N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2)的概率密度函数(PDF),解释参数含义。1.2标准正态变换给定X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2),写出将X
- 二项分布习题集 · 题目篇
aichitang2024
概率论习题集概率论
二项分布习题集·题目篇共18题,覆盖二项分布的定义、性质、参数估计、区间估计、假设检验、极限近似以及工程应用与编程仿真。完成后请移步《答案与解析篇》。1.基础概念(4题)1.1定义写出二项分布Bin(n,p)\mathrm{Bin}(n,p)Bin(n,p)的概率质量函数(PMF),说明n,pn,pn,p的含义。1.2伯努利关系用一句话说明二项分布与伯努利分布的关系,并给出数学表达式。1.3期望方
- 统计学-什么是一类错误和二类错误?
阿桨
数据分析知识问答数据分析
在统计学中,一类错误(TypeIerror)和二类错误(TypeIIerror)是与假设检验相关的两种错误类型。一类错误是指在实际上原假设为真的情况下,拒绝了原假设的错误。换句话说,我们错误地认为存在效应或差异,而实际上并不存在。一类错误通常被表示为α(alpha),即显著性水平。常见的显著性水平是0.05,表示我们接受5%的风险来犯一类错误。二类错误是指在实际上备择假设为真的情况下,接受了原假设
- 书籍-《顺序变化检测和假设检验》
深度学习计算机视觉人工智能
书籍:SequentialChangeDetectionandHypothesisTesting作者:AlexanderTartakovsky出版:ChapmanandHall/CRC编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《顺序变化检测和假设检验》01书籍介绍顺序变化检测和假设检验的统计方法广泛应用于多个领域,如质量控制、生物医学工程、通信网络、计量经济学、图像处理和安全等。本书提供
- 集中趋势描述
不解风情的老妖怪哎
CDA数据分析备考学习笔记数据分析
一、集中趋势的定义与核心目标集中趋势指数据向其中心值聚集的倾向,反映数据的典型水平或分布中心。其核心是通过统计指标(如众数、中位数、均值)概括数据的核心特征,帮助快速理解数据分布的核心位置。核心作用:简化复杂数据、指导业务决策(如确定用户平均消费水平)、支持模型假设检验(如正态分布验证)。二、数据类型与对应的集中趋势指标1.分类数据(名义尺度)(1)适用指标:众数(Mode)①定义:出现频次最高的
- 从质检到实验:Python三大T检验实战案例
梦想画家
数据分析工程人工智能#pythonpythonT检验
本文深入探讨统计学中的T检验技术,结合饮料质检、药物疗效验证和用户行为分析三大真实业务场景,详解Python中Scipy和Statsmodels库的实践方法。通过完整代码演示和结果解读,帮助从业者快速掌握数据驱动决策的核心技能。T检验方法体系概述T检验(Student’st-test)是基于小样本均值差异的假设检验方法,在以下场景表现优异:总体标准差未知时(现实中的常见情况)样本量介于3-30之间
- AI工程师成长指南:从入门到精通的完整路线图
赛博AI Lewis
人工智能
AI工程师RoadmapAI工程师成长指南:从入门到精通的完整路线图随着人工智能技术的快速发展,AI工程师已成为全球科技行业的热门职业。本文基于行业标准Roadmap,结合核心技能与实战经验,为你梳理一条清晰的成长路径,助你从零基础迈向专业领域。一、夯实基础:数学、编程与机器学习数学基础线性代数:矩阵运算、特征值分解是深度学习模型(如神经网络)的核心数学工具。概率统计:贝叶斯推断、假设检验为模型评
- python数据分析--- ch12-13 python参数估计与假设检验
shlay
统计分析软件python数据分析参数估计假设检验
python数据分析---ch12-13python参数估计与假设检验1.Ch12--python参数估计1.1参数估计与置信区间的含义及函数版1.1.1参数估计与置信区间的含义1.1.2参数估计函数版1.1.3参数估计函数版1.2Python单正态总体均值区间估计1.2.1方差σ2\sigma^2σ2已知1.2.2方差σ2\sigma^2σ2未知1.3Python单正态总体方差区间估计1.4Py
- 【时间序列分析】时间序列的预处理——平稳性检验和纯随机性检验
知识快到我脑里来
时间序列分析人工智能学习笔记
目录(一)平稳性检验平稳性的时序图检验平稳性的自相关图检验(二)纯随机性检验纯随机序列的定义白噪声序列的性质纯随机性检验原理:Barlett定理检验统计量(一)平稳性检验平稳性检验是时间序列分析中的一个重要步骤,主要用于判断时间序列数据的统计特性(如均值和方差)是否随时间变化方法一:图检验•时序图检验•自相关图检验方法二:构造检验统计量进行假设检验(之后的文章详细介绍)•单位根检验平稳性的时序图检
- 卡方检验(Chi-square test-χ²检验)
生信学习小达人
分析r语言
1.卡方检验(Chi-squaretest)卡方检验(Chi-squaretest),也称为χ²检验,是一种统计学中常用的假设检验方法,用于评估观察频数与期望频数之间是否存在显著差异。以下是进行卡方检验的基本步骤和概念:检验假设:零假设(H0):假设各总体率或总体构成比之间没有差别,或者两个变量之间没有关联性。备择假设(H1):假设各总体率或总体构成比之间有差别,或者两个变量之间存在关联性。计算期
- 【数学基础】第十三课:参数估计
x-jeff
机器学习必备的数学基础机器学习
1.参数估计参数估计是统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,可分为:点估计。区间估计。1.1.参数估计和假设检验参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数在估计前是未知的。而在假设检验中,则是先对总体参数值提出一个假设,然后利用样本信息去
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 使用geom_bracket函数为指定水平箱图之间添加假设检验名称以及显著性水平p值(R语言)
认真写代码i
r语言开发语言R语言
使用geom_bracket函数为指定水平箱图之间添加假设检验名称以及显著性水平p值(R语言)在R语言中,我们经常使用箱图(boxplot)来可视化数据的分布和比较不同组之间的差异。当我们进行假设检验时,除了展示箱图之间的差异,还需要在图形上添加假设检验的名称和显著性水平p值,以便更清晰地表达结果。在本文中,我们将介绍如何使用ggplot2包中的geom_bracket函数为指定水平箱图之间添加假
- 数据挖掘与数据分析
dundunmm
数据挖掘数据挖掘数据分析人工智能
数据挖掘和数据分析是两个密切相关但有所区别的领域,它们都涉及从数据中提取有价值的信息,但在目标、方法和技术上有所不同。数据挖掘vs.数据分析特征数据挖掘数据分析目标从大数据中自动发现知识和模式通过系统分析数据,得出有意义的结论重点数据模式的自动发现、预测模型的构建数据理解、数据清洗、数据总结、假设验证方法机器学习、聚类、回归、关联规则、深度学习等统计学方法、数据可视化、数据清理、假设检验等应用实时
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 【A/B测试】深度解析:从理论到实践Python实现详解(含源码)
絆人心
python前端开发语言数据分析信息可视化数据挖掘机器学习
目录前言一、什么是A/B测试?A/B测试的常见应用场景二、A/B测试的基本流程三、假设检验:零假设与备择假设Python代码示例:A/B测试的实践四、A/B测试中的统计学方法五、总结附录:完整代码前言A/B测试(也称分流测试)在数据分析和产品优化中扮演重要角色。无论是在网站优化、营销活动还是产品改进中,A/B测试都帮助通过数据驱动决策、测试和验证论文提出了实际操作的基本概念,详细讲解了如何实施A/
- ztree设置禁用节点
3213213333332132
JavaScriptztreejsonsetDisabledNodeAjax
ztree设置禁用节点的时候注意,当使用ajax后台请求数据,必须要设置为同步获取数据,否者会获取不到节点对象,导致设置禁用没有效果。
$(function(){
showTree();
setDisabledNode();
});
- JVM patch by Taobao
bookjovi
javaHotSpot
在网上无意中看到淘宝提交的hotspot patch,共四个,有意思,记录一下。
7050685:jsdbproc64.sh has a typo in the package name
7058036:FieldsAllocationStyle=2 does not work in 32-bit VM
7060619:C1 should respect inline and
- 将session存储到数据库中
dcj3sjt126com
sqlPHPsession
CREATE TABLE sessions (
id CHAR(32) NOT NULL,
data TEXT,
last_accessed TIMESTAMP NOT NULL,
PRIMARY KEY (id)
);
<?php
/**
* Created by PhpStorm.
* User: michaeldu
* Date
- Vector
171815164
vector
public Vector<CartProduct> delCart(Vector<CartProduct> cart, String id) {
for (int i = 0; i < cart.size(); i++) {
if (cart.get(i).getId().equals(id)) {
cart.remove(i);
- 各连接池配置参数比较
g21121
连接池
排版真心费劲,大家凑合看下吧,见谅~
Druid
DBCP
C3P0
Proxool
数据库用户名称 Username Username User
数据库密码 Password Password Password
驱动名
- [简单]mybatis insert语句添加动态字段
53873039oycg
mybatis
mysql数据库,id自增,配置如下:
<insert id="saveTestTb" useGeneratedKeys="true" keyProperty="id"
parameterType=&
- struts2拦截器配置
云端月影
struts2拦截器
struts2拦截器interceptor的三种配置方法
方法1. 普通配置法
<struts>
<package name="struts2" extends="struts-default">
&
- IE中页面不居中,火狐谷歌等正常
aijuans
IE中页面不居中
问题是首页在火狐、谷歌、所有IE中正常显示,列表页的页面在火狐谷歌中正常,在IE6、7、8中都不中,觉得可能那个地方设置的让IE系列都不认识,仔细查看后发现,列表页中没写HTML模板部分没有添加DTD定义,就是<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3
- String,int,Integer,char 几个类型常见转换
antonyup_2006
htmlsql.net
如何将字串 String 转换成整数 int?
int i = Integer.valueOf(my_str).intValue();
int i=Integer.parseInt(str);
如何将字串 String 转换成Integer ?
Integer integer=Integer.valueOf(str);
如何将整数 int 转换成字串 String ?
1.
- PL/SQL的游标类型
百合不是茶
显示游标(静态游标)隐式游标游标的更新和删除%rowtyperef游标(动态游标)
游标是oracle中的一个结果集,用于存放查询的结果;
PL/SQL中游标的声明;
1,声明游标
2,打开游标(默认是关闭的);
3,提取数据
4,关闭游标
注意的要点:游标必须声明在declare中,使用open打开游标,fetch取游标中的数据,close关闭游标
隐式游标:主要是对DML数据的操作隐
- JUnit4中@AfterClass @BeforeClass @after @before的区别对比
bijian1013
JUnit4单元测试
一.基础知识
JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法 对于每一个测试方法都要执行一次(注意与BeforeClass区别,后者是对于所有方法执行一次)@After:释放资源 对于每一个测试方法都要执行一次(注意与AfterClass区别,后者是对于所有方法执行一次
- 精通Oracle10编程SQL(12)开发包
bijian1013
oracle数据库plsql
/*
*开发包
*包用于逻辑组合相关的PL/SQL类型(例如TABLE类型和RECORD类型)、PL/SQL项(例如游标和游标变量)和PL/SQL子程序(例如过程和函数)
*/
--包用于逻辑组合相关的PL/SQL类型、项和子程序,它由包规范和包体两部分组成
--建立包规范:包规范实际是包与应用程序之间的接口,它用于定义包的公用组件,包括常量、变量、游标、过程和函数等
--在包规
- 【EhCache二】ehcache.xml配置详解
bit1129
ehcache.xml
在ehcache官网上找了多次,终于找到ehcache.xml配置元素和属性的含义说明文档了,这个文档包含在ehcache.xml的注释中!
ehcache.xml : http://ehcache.org/ehcache.xml
ehcache.xsd : http://ehcache.org/ehcache.xsd
ehcache配置文件的根元素是ehcahe
ehcac
- java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL
白糖_
javaeclipsespringtomcatWeb
今天学习spring+cxf的时候遇到一个问题:在web.xml中配置了spring的上下文监听器:
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
随后启动
- angular.element
boyitech
AngularJSAngularJS APIangular.element
angular.element
描述: 包裹着一部分DOM element或者是HTML字符串,把它作为一个jQuery元素来处理。(类似于jQuery的选择器啦) 如果jQuery被引入了,则angular.element就可以看作是jQuery选择器,选择的对象可以使用jQuery的函数;如果jQuery不可用,angular.e
- java-给定两个已排序序列,找出共同的元素。
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CommonItemInTwoSortedArray {
/**
* 题目:给定两个已排序序列,找出共同的元素。
* 1.定义两个指针分别指向序列的开始。
* 如果指向的两个元素
- sftp 异常,有遇到的吗?求解
Chen.H
javajcraftauthjschjschexception
com.jcraft.jsch.JSchException: Auth cancel
at com.jcraft.jsch.Session.connect(Session.java:460)
at com.jcraft.jsch.Session.connect(Session.java:154)
at cn.vivame.util.ftp.SftpServerAccess.connec
- [生物智能与人工智能]神经元中的电化学结构代表什么?
comsci
人工智能
我这里做一个大胆的猜想,生物神经网络中的神经元中包含着一些化学和类似电路的结构,这些结构通常用来扮演类似我们在拓扑分析系统中的节点嵌入方程一样,使得我们的神经网络产生智能判断的能力,而这些嵌入到节点中的方程同时也扮演着"经验"的角色....
我们可以尝试一下...在某些神经
- 通过LAC和CID获取经纬度信息
dai_lm
laccid
方法1:
用浏览器打开http://www.minigps.net/cellsearch.html,然后输入lac和cid信息(mcc和mnc可以填0),如果数据正确就可以获得相应的经纬度
方法2:
发送HTTP请求到http://www.open-electronics.org/celltrack/cell.php?hex=0&lac=<lac>&cid=&
- JAVA的困难分析
datamachine
java
前段时间转了一篇SQL的文章(http://datamachine.iteye.com/blog/1971896),文章不复杂,但思想深刻,就顺便思考了一下java的不足,当砖头丢出来,希望引点和田玉。
-----------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第二课
dcj3sjt126com
englishword
money 钱
paper 纸
speak 讲,说
tell 告诉
remember 记得,想起
knock 敲,击,打
question 问题
number 数字,号码
learn 学会,学习
street 街道
carry 搬运,携带
send 发送,邮寄,发射
must 必须
light 灯,光线,轻的
front
- linux下面没有tree命令
dcj3sjt126com
linux
centos p安装
yum -y install tree
mac os安装
brew install tree
首先来看tree的用法
tree 中文解释:tree
功能说明:以树状图列出目录的内容。
语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式
- Map迭代方式,Map迭代,Map循环
蕃薯耀
Map循环Map迭代Map迭代方式
Map迭代方式,Map迭代,Map循环
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年
- Spring Cache注解+Redis
hanqunfeng
spring
Spring3.1 Cache注解
依赖jar包:
<!-- redis -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
- Guava中针对集合的 filter和过滤功能
jackyrong
filter
在guava库中,自带了过滤器(filter)的功能,可以用来对collection 进行过滤,先看例子:
@Test
public void whenFilterWithIterables_thenFiltered() {
List<String> names = Lists.newArrayList("John"
- 学习编程那点事
lampcy
编程androidPHPhtml5
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- 架构师之流处理---------bytebuffer的mark,limit和flip
nannan408
ByteBuffer
1.前言。
如题,limit其实就是可以读取的字节长度的意思,flip是清空的意思,mark是标记的意思 。
2.例子.
例子代码:
String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
Sy
- org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1, column 1
Everyday都不同
$转义el表达式
最近在做Highcharts的过程中,在写js时,出现了以下异常:
严重: Servlet.service() for servlet jsp threw exception
org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1,
- 用Java实现发送邮件到163
tntxia
java实现
/*
在java版经常看到有人问如何用javamail发送邮件?如何接收邮件?如何访问多个文件夹等。问题零散,而历史的回复早已经淹没在问题的海洋之中。
本人之前所做过一个java项目,其中包含有WebMail功能,当初为用java实现而对javamail摸索了一段时间,总算有点收获。看到论坛中的经常有此方面的问题,因此把我的一些经验帖出来,希望对大家有些帮助。
此篇仅介绍用
- 探索实体类存在的真正意义
java小叶檀
POJO
一. 实体类简述
实体类其实就是俗称的POJO,这种类一般不实现特殊框架下的接口,在程序中仅作为数据容器用来持久化存储数据用的
POJO(Plain Old Java Objects)简单的Java对象
它的一般格式就是
public class A{
private String id;
public Str