【语义分割】awesome-semantic-segmentation-pytorch 实战

1、配置pytorch环境

CUDA8 安装pytorch1.0.1:

conda install pytorch torchvision cudatoolkit=8.0

 

2、训练模型

2.1设置类别:

类别设置:类别总数+1

awesome-semantic-segmentation-pytorch/core/data/dataloader/pascal_voc.py

不然会报错:RuntimeError: Assertion `cur_target >= 0 && cur_target < n_classes' failed. at /opt/conda/conda-bld/

2.2模型默认路径 :

~/.torch/models

2.3训练

Single GPU training
# for example, train fcn32_vgg16_pascal_voc:
python train.py --model fcn32s --backbone vgg16 --dataset pascal_voc --lr 0.0001 --epochs 50
Multi-GPU training
# for example, train fcn32_vgg16_pascal_voc with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py --model fcn32s --backbone vgg16 --dataset pascal_voc --lr 0.0001 --epochs 50
Evaluation

Single GPU evaluating
# for example, evaluate fcn32_vgg16_pascal_voc
python eval.py --model fcn32s --backbone vgg16 --dataset pascal_voc
Multi-GPU evaluating
# for example, evaluate fcn32_vgg16_pascal_voc with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS eval.py --model fcn32s --backbone vgg16 --dataset pascal_voc

PSPNet-Resnet50

python train.py --model psp --backbone resnet50 --dataset pascal_voc --lr 0.0001 --epochs 500
python eval.py --model psp --backbone resnet50 --dataset pascal_voc

继续训练的话,设置--resume

 

Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /home/yuanyq/.torch/models/vgg16-397923af.pth
113246208it [00:13, 5563879.00it/s]

Found 78 images in the folder ../datasets/voc/VOC2012
2019-09-20 09:03:04,978 semantic_segmentation INFO: Start training, Total Epochs: 50 = Total Iterations 5400

Found 184 images in the folder ../datasets/voc/VOC2012
2019-09-20 09:09:35,498 semantic_segmentation INFO: Start training, Total Epochs: 50 = Total Iterations 12950

 

【语义分割】awesome-semantic-segmentation-pytorch 实战_第1张图片

epochs,batch_size,iterations关系:

iterations

iterations(迭代):每一次迭代都是一次权重更新,每一次权重更新需要batch_size个数据进行Forward运算得到损失函数,再BP算法更新参数。1个iteration等于使用batchsize个样本训练一次。

epochs

epochs被定义为向前和向后传播中所有批次的单次训练迭代。这意味着1个周期是整个输入数据的单次向前和向后传递。简单说,epochs指的就是训练过程中数据将被“轮”多少次,就这样。

举个例子

训练集有1000个样本,batchsize=10,那么: 
训练完整个样本集需要: 
100次iteration,1次epoch。

具体的计算公式为: 
one epoch = numbers of iterations = N = 训练样本的数量/batch_size

【语义分割】awesome-semantic-segmentation-pytorch 实战_第2张图片

你可能感兴趣的:(语义分割)