设计的的思想:主要的是分而治之,将大的文件分割称为一个个小的文件,存储在各个机器上。
在大数据中的应用:为大数据框架提供储存数据的服务
重点概念:文件分块、副本存放、元数据。
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件。
其次,它是分布式的,很多服务器联合实现功能。
(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M。
(2) HDFS文件系统提供一个目录树,类似于一般操作系统的文件系统。
(3)目录结构以及元数据信息交给namenode存储。namenode是HDFS集群的主节点,负责维护目录结构和每一个文件的对应的block信息(block块的id,存储在哪一个datanode)
(4) 文件的各个block块存储在datanode中,每一个block都可以在多个dataNode存储,这里面包括每一个block块的副本。
(5)HDFS适合一次写入,多次读取的场景。
[-appendToFile [-cat [-ignoreCrc] [-checksum [-chgrp [-R] GROUP PATH...] [-chmod [-R] [-chown [-R] [OWNER][:[GROUP]] PATH...] [-copyFromLocal [-f] [-p] [-copyToLocal [-p] [-ignoreCrc] [-crc] [-count [-q] [-cp [-f] [-p] [-createSnapshot [-deleteSnapshot [-df [-h] [ [-du [-s] [-h] [-expunge] [-get [-p] [-ignoreCrc] [-crc] [-getfacl [-R] [-getmerge [-nl] [-help [cmd ...]] [-ls [-d] [-h] [-R] [ [-mkdir [-p] [-moveFromLocal [-moveToLocal [-mv [-put [-f] [-p] [-renameSnapshot [-rm [-f] [-r|-R] [-skipTrash] [-rmdir [--ignore-fail-on-non-empty] [-setfacl [-R] [{-b|-k} {-m|-x [-setrep [-R] [-w] [-stat [format] [-tail [-f] [-test -[defsz] [-text [-ignoreCrc] [-touchz [-usage [cmd ...]] |
-help 功能:输出这个命令参数手册 |
-ls 功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注:这些参数中,所有的hdfs路径都可以简写 -->hadoop fs -ls / 等同于上一条命令的效果 |
-mkdir 功能:在hdfs上创建目录 示例:hadoop fs -mkdir -p /aaa/bbb/cc/dd |
-moveFromLocal 功能:从本地剪切粘贴到hdfs 示例:hadoop fs - moveFromLocal /home/hadoop/a.txt /aaa/bbb/cc/dd -moveToLocal 功能:从hdfs剪切粘贴到本地 示例:hadoop fs - moveToLocal /aaa/bbb/cc/dd /home/hadoop/a.txt |
--appendToFile 功能:追加一个文件到已经存在的文件末尾 示例:hadoop fs -appendToFile ./hello.txt hdfs://hadoop-server01:9000/hello.txt 可以简写为: Hadoop fs -appendToFile ./hello.txt /hello.txt
|
-cat 功能:显示文件内容 示例:hadoop fs -cat /hello.txt
-tail 功能:显示一个文件的末尾 示例:hadoop fs -tail /weblog/access_log.1 -text 功能:以字符形式打印一个文件的内容 示例:hadoop fs -text /weblog/access_log.1 |
-chgrp -chmod -chown 功能:linux文件系统中的用法一样,对文件所属权限 示例: hadoop fs -chmod 666 /hello.txt hadoop fs -chown someuser:somegrp /hello.txt |
-copyFromLocal 功能:从本地文件系统中拷贝文件到hdfs路径去 示例:hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/ -copyToLocal 功能:从hdfs拷贝到本地 示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz |
-cp 功能:从hdfs的一个路径拷贝hdfs的另一个路径 示例: hadoop fs -cp /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-mv 功能:在hdfs目录中移动文件 示例: hadoop fs -mv /aaa/jdk.tar.gz / |
-get 功能:等同于copyToLocal,就是从hdfs下载文件到本地 示例:hadoop fs -get /aaa/jdk.tar.gz -getmerge 功能:合并下载多个文件 示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,... hadoop fs -getmerge /aaa/log.* ./log.sum |
-put 功能:等同于copyFromLocal 示例:hadoop fs -put /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
|
-rm 功能:删除文件或文件夹 示例:hadoop fs -rm -r /aaa/bbb/
-rmdir 功能:删除空目录 示例:hadoop fs -rmdir /aaa/bbb/ccc |
-df 功能:统计文件系统的可用空间信息 示例:hadoop fs -df -h /
-du 功能:统计文件夹的大小信息 示例: hadoop fs -du -s -h /aaa/*
|
-count 功能:统计一个指定目录下的文件节点数量 示例:hadoop fs -count /aaa/
|
-setrep 功能:设置hdfs中文件的副本数量 示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz
|
HDFS的三大角色:nameNode、dataNote、secondary NameNode
NameNode负责元数据的管理
DataNode负责管理用户数据块
文件会按照固定的大小(block size)分为若干个block存储在datanode上
每一个文件块有多个副本,存储在不同的dataNode中
DataNode会定期向NameNode汇报自己保存的block信息,NameNode负责管理这些元数据信息
具体的流程如下
流程描述如下:
1.客户端请求上传文件,namenode根据客户端请求的路径检查该路径是否存在,如果不存在,直接报错;否则,确认可以上传。
2.客户端请求上传第一个block块,namenode根据存储的元数据信息,根据就近原则,返回datanode的信息,客户端发出socket请求。
3.datanode响应请求,两者建立连接,datanode1和datanode2建立pipeline来复制副本数据,注意,这里也是就近原则
4.客户端使用socket发送数据,发送的数据是一个pocket,大小是64kB,当然这里需要使用校验数据,datanode1也是通过pipeline复制副本。
5.循环上述步骤,直到数据发送完成,断开连接。
具体的流程:
1.客户端请求某一个文件,namenode检验请求路径,如果路径错误,抛出异常;否则,namenode根据存储的元数据信息返回保存有该数据的datanode
2.客户端根据namenode返回的datanode数据信息依照就近原则访问dataNode,建立socket流。
3.datanode发送数据,按照pocket大小发送数据。
4.客户端按照pocket为单位接受,进行本地缓存。
负责客户端的请求
管理元数据信息
3种数据管理形式:
1.内存元数据
2.磁盘元数据镜像文件
3.数据操作日志文件
1.内存中有一份内存元数据(metadata )
2.磁盘中有一个元数据镜像文件(fsImage)
3.用于衔接内存文件以及持久化文件之间的日志操作文件。
的一个工具来查看edits中的信息
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml
每过一段时间,secondary namenode会从namenode下载操作日志文件edits和最新的fsimage下载到本地,加载到内存进行merge,这个过程称为checkpoint。
具体的流程如下:
1.当需要checkpoint后,namenode会将这个正在操作的edits文件回滚成一个新的edits。
2.secondary namenode将edits文件和fsimage文件下载到本地,注意只有第一次时,才会下载fsimage文件然后将这些文件加载到内存中,进行日志回放,形成新的数据,最后序列化fsimage。
3.secondary namenode将新的fsimage上传到namenode上。
dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒 dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary #以上两个参数做checkpoint操作时,secondary namenode的本地工作目录 dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}
dfs.namenode.checkpoint.max-retries=3 #最大重试次数 dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒 dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录 |
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据。
在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:
$HADOOP_HOME/bin/hdfs namenode -format |
格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构
current/ |-- VERSION |-- edits_* |-- fsimage_0000000000008547077 |-- fsimage_0000000000008547077.md5 `-- seen_txid |
其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:
hadoop.tmp.dir是在core-site.xml中配置的,默认值如下
|
dfs.namenode.name.dir属性可以配置多个目录,
如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,....。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs.namenode.name.dir/current/目录下的文件进行解释。
1、VERSION文件是Java属性文件,内容大致如下:
#Fri Nov 15 19:47:46 CST 2013 namespaceID=934548976 clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196 cTime=0 storageType=NAME_NODE blockpoolID=BP-893790215-192.168.24.72-1383809616115 layoutVersion=-47 |
其中
(1)、namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
(2)、storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
(3)、cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
(4)、layoutVersion表示HDFS永久性数据结构的版本信息,只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
(5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明
a、使用如下命令格式化一个Namenode:
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId
选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。
b、使用如下命令格式化其他Namenode:
$HADOOP_HOME/bin/hdfs namenode -format -clusterId
c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:
$HADOOP_PREFIX_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR -upgrade -clusterId
如果没有提供ClusterID,则会自动生成一个ClusterID。
(6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。
2、$dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。
3、$dfs.namenode.name.dir/current目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。
补充:seen_txid
文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits进行加载edits
1、引入依赖
|
注:如需手动引入jar包,hdfs的jar包----hadoop的安装目录的share下
2、window下开发的说明
建议在linux下进行hadoop应用的开发,不会存在兼容性问题。如在window上做客户端应用开发,需要设置以下环境:
A、在windows的某个目录下解压一个hadoop的安装包
B、将安装包下的lib和bin目录用对应windows版本平台编译的本地库替换
C、在window系统中配置HADOOP_HOME指向你解压的安装包
D、在windows系统的path变量中加入hadoop的bin目录
public class HdfsClient {
FileSystem fs = null;
@Before
public void init() throws Exception {
// 构造一个配置参数对象,设置一个参数:我们要访问的hdfs的URI
// 从而FileSystem.get()方法就知道应该是去构造一个访问hdfs文件系统的客户端,以及hdfs的访问地址
// new Configuration();的时候,它就会去加载jar包中的hdfs-default.xml
// 然后再加载classpath下的hdfs-site.xml
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://hdp-node01:9000");
/**
* 参数优先级: 1、客户端代码中设置的值 2、classpath下的用户自定义配置文件 3、然后是服务器的默认配置
*/
conf.set("dfs.replication", "3");
// 获取一个hdfs的访问客户端,根据参数,这个实例应该是DistributedFileSystem的实例
// fs = FileSystem.get(conf);
// 如果这样去获取,那conf里面就可以不要配"fs.defaultFS"参数,而且,这个客户端的身份标识已经是hadoop用户
fs = FileSystem.get(new URI("hdfs://hdp-node01:9000"), conf, "hadoop");
}
/**
* 往hdfs上传文件
*
* @throws Exception
*/
@Test
public void testAddFileToHdfs() throws Exception {
// 要上传的文件所在的本地路径
Path src = new Path("g:/redis-recommend.zip");
// 要上传到hdfs的目标路径
Path dst = new Path("/aaa");
fs.copyFromLocalFile(src, dst);
fs.close();
}
/**
* 从hdfs中复制文件到本地文件系统
*
* @throws IOException
* @throws IllegalArgumentException
*/
@Test
public void testDownloadFileToLocal() throws IllegalArgumentException, IOException {
fs.copyToLocalFile(new Path("/jdk-7u65-linux-i586.tar.gz"), new Path("d:/"));
fs.close();
}
@Test
public void testMkdirAndDeleteAndRename() throws IllegalArgumentException, IOException {
// 创建目录
fs.mkdirs(new Path("/a1/b1/c1"));
// 删除文件夹 ,如果是非空文件夹,参数2必须给值true
fs.delete(new Path("/aaa"), true);
// 重命名文件或文件夹
fs.rename(new Path("/a1"), new Path("/a2"));
}
/**
* 查看目录信息,只显示文件
*
* @throws IOException
* @throws IllegalArgumentException
* @throws FileNotFoundException
*/
@Test
public void testListFiles() throws FileNotFoundException, IllegalArgumentException, IOException {
// 思考:为什么返回迭代器,而不是List之类的容器
RemoteIterator listFiles = fs.listFiles(new Path("/"), true);
while (listFiles.hasNext()) {
LocatedFileStatus fileStatus = listFiles.next();
System.out.println(fileStatus.getPath().getName());
System.out.println(fileStatus.getBlockSize());
System.out.println(fileStatus.getPermission());
System.out.println(fileStatus.getLen());
BlockLocation[] blockLocations = fileStatus.getBlockLocations();
for (BlockLocation bl : blockLocations) {
System.out.println("block-length:" + bl.getLength() + "--" + "block-offset:" + bl.getOffset());
String[] hosts = bl.getHosts();
for (String host : hosts) {
System.out.println(host);
}
}
System.out.println("--------------为angelababy打印的分割线--------------");
}
}
/**
* 查看文件及文件夹信息
*
* @throws IOException
* @throws IllegalArgumentException
* @throws FileNotFoundException
*/
@Test
public void testListAll() throws FileNotFoundException, IllegalArgumentException, IOException {
FileStatus[] listStatus = fs.listStatus(new Path("/"));
String flag = "d-- ";
for (FileStatus fstatus : listStatus) {
if (fstatus.isFile()) flag = "f-- ";
System.out.println(flag + fstatus.getPath().getName());
}
}
}