tensorflow实现非线性拟合

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]  # 使得维度为[200, 1]
noise = np.random.normal(0, 0.02, x_data.shape)  # 维度为[200, 1]的正太分布
y_data = np.square(x_data) + noise

# 定义两个占位符placeholder
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])

# 定义神经网络的中间层
W1 = tf.Variable(tf.random_normal([1, 10]))  # 10个神经元
b1 = tf.Variable(tf.zeros([1, 10]))
W1_plus_b1 = tf.matmul(x, W1) + b1
output1 = tf.nn.tanh(W1_plus_b1)  # 激活函数tanh()

# 定义神经网络的输出层
W2 = tf.Variable(tf.random_normal([10, 1]))
b2 = tf.Variable(tf.zeros([1, 1]))
W2_plus_b2 = tf.matmul(output1, W2) + b2
prediction = tf.nn.tanh(W2_plus_b2)  # 激活函数

# 二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    # 变量的初始化
    sess.run(tf.global_variables_initializer())
    # 训练2000次
    for i in range(2000):
        sess.run(train_step, feed_dict={x: x_data, y: y_data})
        if i % 100 == 0:
            print("step: "+str(i))

    # 获取预测值
    prediction_value = sess.run(prediction, feed_dict={x: x_data})
    plt.figure()
    plt.xlabel('x_data')
    plt.ylabel('y_data')
    plt.scatter(x_data, y_data)

    plt.plot(x_data, prediction_value, 'r-', lw=5)
    plt.show()

运行结果图如下:

tensorflow实现非线性拟合_第1张图片

 

你可能感兴趣的:(深度学习TensorFlow)