- matlab cdf,Matlab 简单计算PDF和CDF | 学步园
苏晓晓
matlabcdf
通信的魅力就是在于随机性中蕴含的确定性,这也就是为什么你随便拿出一本通信方面的教材,前面几章都会大篇幅的讲解随机过程,随机过程也是研究生必须深入了解的一门课,特别是对于信号处理以及通信专业的学生。在实际工作中,通常会得到很多随机的数,我们要分析它们的分布,最常见的就是用PDF和CDF来描述了。好了,还是举出一个具体例子吧。那么实际中我们要验证是不是符合这样的分布,首先看代码再解释:%%%%%%%%
- 随机过程【张颢】第一章
模拟IC和AI的Learner
随机过程机器学习人工智能
学习目标随机过程主要研究多个随机变量之间的联系。主要分为两个大类:一,线性相关对线性相关的研究主要从以下方面:(1)从时域角度(2)从频域角度主要研究一个重要的过程:(3)高斯过程二,马尔可夫性主要学习:(1)离散时间的马尔可夫链(2)连续时间的马尔可夫链还会学习一个典型的过程(最简单、应用最广泛的马尔可夫过程):(3)泊松过程三,鞅(研究较少,主要用在金融方面)
- 随机信号是什么,随机信号的分类
cxylay
声音信号随机信号分类白噪声高斯非平稳
随机信号(RandomSignal)是指在时间或空间上,信号的取值是不可预测的,或者说是由随机过程所生成的信号。随机信号广泛存在于自然界中,例如大气噪声、电磁干扰、地震波等都可以被视为随机信号。随机信号的特点:①不可预测性:随机信号的未来取值无法通过确定性规律准确预测,只能通过统计特性来描述和估计。②统计特性描述:由于随机信号的瞬时值难以预测,因此我们通常通过统计特性,如均值、方差、自相关函数、功
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 【Stable Diffusion】:原理、应用与未来展望
Python小原
stablediffusion人工智能深度学习
一、引言在人工智能的快速发展中,StableDiffusion作为一种先进的随机过程模型,受到了广泛的关注。StableDiffusion不仅能够描述许多自然和人工系统中的随机演化行为,而且在多个领域展现出了广泛的应用潜力。本文将详细介绍StableDiffusion的原理、应用以及未来的发展趋势。二、StableDiffusion的原理StableDiffusion可以被定义为一个基于随机漫步的
- 随机过程及应用学习笔记(三)几种重要的随机过程
苦瓜汤补钙
学习笔记
介绍独立过程和独立增量过程。重点介绍两种独立增量过程-—维纳过程和泊松过程。目录前言一、独立过程和独立增量过程1、独立过程(IndependentProcess)2、独立增量过程(IndependentIncrementProcess)二、正态过程(高斯过程)1、正态过程的定义编辑2、正态过程的概率分布三、维纳过程(Brown运动)1、定义2、概率分布及数学特征3、性质四、泊松过程1、定义2、概率
- MATLAB实现几何布朗运动(模拟股价走势)
MATLAB代码顾问
matlab开发语言
问题描述:几何布朗运动(GeometricBrownianMotion,GBM)是一种常常用于模拟股票价格或汇率等金融资产价格的随机过程。MATLAB代码:clearall;clc;closeall;%设置参数T=1;%时间总长N=1000;%时间步数dt=T/N;%时间步长mu=0.1;%均值sigma=0.2;%标准差S0=100;%初始价格%初始化向量S=zeros(1,N);%价格t=ze
- 指数随机变量 泊松过程跳_随机过程学习笔记(1):指数分布与泊松过程
姐姐妹妹向前冲
指数随机变量泊松过程跳
笔记主要基于中文版《应用随机过程IntroductiontoProbabilityModels》(SheldonM.Ross),只有非常少的一部分是我自己的注解。写这个笔记的目的是自己复习用,阅读需要一定的微积分和概率论基础。本人为初学者,且全部为自学,如果笔记中有错误,欢迎指正。提示:概率论和指数分布作为本节的基础,我把一些重要公式写在开头,但是可以直接从泊松过程开始阅读,在泊松过程中用到相关知
- 应用随机过程期中复习总结
ldc1513
课程复习资料数学概率论应用随机过程马氏链常返
应用随机过程期中复习总结byldc前言:该笔记为北京大学数学科学学院应用随机过程课程的复习笔记和内容总结。主要参考课程讲义编写而成。该复习笔记截止期中,主要介绍了马氏链的概念,并且非常详细地讲解了时齐马氏链的各个性质。由于是总结性质的笔记,因此该总结中的结论不加证明地给出,如果需要查询证明的话可以参考以下两本书,也可以自行谷歌:英文:《MarkovChain》,Norris中文:《应用随机过程》,
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 随机过程及应用学习笔记(二)随机过程的基本概念
苦瓜汤补钙
学习笔记
随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。目录前言一、随机过程的定义及分类1、定义2、分类二、随机过程的分布及其数字特征1、分布函数2、数字特征均值函数和方差函数协方差函数和相关函数3、互协方差函数与互相关函数三、复随机过程总结前言随机过程理论产生于本世纪初,起源于统计物理学领域。布朗运动和热噪声是随机过程的最早例子。随机过程理论在社会科学、自然科学和工程技术的各个
- 随机过程及应用学习笔记(一)概率论(概要)
苦瓜汤补钙
学习笔记
概率是随机的基础,在【概率论(概要)】这个部分中仅记录学习随机过程及应用的基本定义和结果。前言首先,概率论研究的基础是概率空间。概率空间由一个样本空间和一个概率测度组成,样本空间包含了所有可能的结果,而概率测度则描述了每个结果发生的可能性大小。研究者通过定义适当的概率测度,可以更准确地描述各种随机现象的发生概率。一、概率空间(Ω,F,P)Samplespace样本空间:随机试验的所有可能结果构成的
- Smart seq2 2014
韧_7e6f
题目:Full-lengthRNA-seqfromsinglecellsusingSmart-seq2期刊:NatProtoc.通讯作者:RickardSandberg1.背景越来越明显的是,由于内在的随机过程和外部因素(如周围的微环境),体内或体外细胞培养中看似均匀的细胞群在表达模式上可以显示出相当大的异质性。需要单细胞分辨率来增加我们对细胞间变异性的理解。我们的团队最近证明了Smart-seq
- 问题汇总20240206——角度随机游走、字符与字节、SWaP、跨平台通讯问题、#park
老王WHH
问题汇总经验分享学习笔记嵌入式硬件
文章目录角度随机游走字符与字节SWaP跨平台通讯过程中必须考虑以下问题:#park指令角度随机游走1.角度随时间变化是随机过程,即角度在时间上的随机漂移降低:温度稳定、校准、误差补偿、数据滤波(卡尔曼)降低环境因素带来的干扰,例如振动或噪声。但总的来说不可能完全消除。字符与字节字符:字母、数字、文本、标点等。不同的标准下的字符与字节的换算是不同的:ASCII、UTF-8:1字符=1字节=8bits
- 通信基础 4——遍历容量、信道估计、干扰对齐
今天也努力学习的Paul
物理层安全
目录遍历容量/各态历经性容量信道估计干扰对齐无线携能通信遍历容量/各态历经性容量说遍历容量不十分准确,应该叫各态历经性容量(是相对于中断容量说的)首先要理解《信息论》中得香农信道容量,然后结合《随机过程》这门课的内容来理解。通常我们所说的香农容量是在确定性信道条件下得到的信道容量,是一个确定值。但实际上,信道状态是一个不断变化的随机过程,应该采用统计意义上的信道容量来描述。有两种统计意义上的描述方
- 做研究系列:如何研究量子科学
科学禅道
Research:做研究系列量子计算
研究量子科学通常需要经过系统的学术训练和实践探索,以下是入门和深入研究量子科学的一般步骤:基础知识学习:学习物理学基础,包括经典力学、电磁学、热力学与统计物理等。掌握数学工具,如线性代数、微积分、泛函分析、复变函数论以及概率论与随机过程等,这些是理解和构建量子理论模型的基础。量子力学入门:从基本的量子力学原理开始,如波粒二象性、薛定谔方程、不确定性原理、态叠加原理和测量问题等。阅读经典的教材,例如
- 【深度学习】马尔科夫链
weixin_40293999
深度学习深度学习人工智能
马尔科夫链一、常见的马尔可夫过程:(1)独立随机过程为马尔可夫过程。(2)独立增量过程为马尔可夫过程:没{X(t),t∈[0,+∞)}为一独立增量过程,且有P(X(0)=x0)=1,x0为常数,则X(t)为马尔可夫过程。(3)泊松过程为马尔可夫过程。(4)维纳过程为马尔可夫过程。(5)质点随机游动过程为马尔可夫过程。二、模型的创立条件importnumpyasnpdefmarkov():init_
- 泊松过程介绍
White__River
随机过程人工智能
泊松过程根据海上终端通信需求分布在时间和空间上的不均匀性,可以用泊松过程模拟这一过程.以下是泊松过程相关的理论知识.1.计数过程如果随机过程N(t)代表系统(从某一开始时刻)到t时刻这段时间内发生某个事件的次数,就称之为计数过程.根据其定义,计数过程的性质有:N(t)>=0N(t)的值是整数若s=0,有P{N(h+s)−N(s)=n}=e−λh(λh)nn!,n=0,1,...P\{N(h+s)-
- MUSIC算法原理与信号DOA估计
LiuXiaoli0720
算法线性代数矩阵信号处理
一、平稳随机过程的自相关矩阵及其性质1.1自相关矩阵的定义对离散时间平稳随即构成,用MMM个时刻的随机变量u(n),u(n−1),...,u(n−M+1)u(n),u(n-1),...,u(n-M+1)u(n),u(n−1),...,u(n−M+1)构造随机向量u(n)=[u(n),u(n−1),...,u(n−M+1)]Tu(n)=[u(n),u(n-1),...,u(n-M+1)]^{T}u(
- 专业140+总分420+复旦大学957信号与系统考研经验复旦电子信息与通信
一个通信老学姐
博睿泽信息通信考研论坛博睿泽信息通信考研考研信息与通信信号处理经验分享
今年专业957信号与系统140+,数二140+,总分420+,顺利上岸复旦大学,回顾这一年的复习,有起有落,也有过犹豫和放弃,好在都坚持下来了,希望大家考研复习要不忘初心,困难肯定是很多的,要坚持到底,不要怀疑自己,或者总觉得时间不够,想着二战。给自己松懈的理由。希望我的复习经验可以对大家复习有所帮助。专业课:957信号与系统(包含随机过程),复旦以前专业课考试内容较多,2022开始改为信号与系统
- BUPT果园物联大二下不完全回忆
本小爷世界第一花式帅
BUPT果园课程回忆录经验分享
随便写写,随写随更,主要我对不同课程的记忆点(主要是专业课)北邮国院物联网工程专业大二下学期课程记录I.必修课:1.数字电路与逻辑设计2.Java高级语言程序设计3.数据库4.概率论与随机过程5.产品开发与管理6.Design&Build实训37.学术交流技能28.MAOGAI9.MAOGAI(实践环节)10.XINGZHENG411.个人发展计划IIII.选修课:1.人文与医学(在线课程)2.区
- 2019-11-07
LiuLiuLu
随机过程的学习已经接近尾声了。我觉得该写点什么记录一下了。最初决定学习随机过程的原因是多方面的。一方面是想在信号处理这个方向深耕,随机过程是处理随机信号最重要的数学工具,想深入学习统计信号处理必须学习随机过程。另一方面,随机数学本身便充满了魅力。我选取的教材是中科大出版社出版的《随机过程引论》。坦白说,这不是一本好教材。不过和其他中科大出版的教材类似,它非常注重数学基础。该书的第一章以测度论为基础
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 深度CV基础——图像噪声和滤波
徐kun按门铃
智能车笔记python深度学习opencv机器学习
一,图像噪声1.图像噪声的概念:图像噪声是图像在获取或是传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理的信号。很多时候将图像噪声看做多维随机过程,因而描述噪声的方法完全可以借用随机过程的描述,也就是使用随机过程的描述,也就是用它的高斯分布函数和概率密度分布函数。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受到了噪声的
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- Python蒙特卡洛相关变量SciPy模拟
亚图跨际
交叉知识python蒙特卡洛scipy
SciPy的概率分布和分布拟合简述:概率分布对随机过程进行建模并将其拟合到观测数据。SciPy的概率分布、它们的属性和方法。通过拟合Weibull极值分布来模拟组件寿命的示例。一个自动化的拟合程序,从大约60个候选分布中选择最好的。SciPy中提供了123个分布:dist_continu=[dfordindir(stats)ifisinstance(getattr(stats,d),stats.r
- 随机过程——卡尔曼滤波学习笔记
m0_46521579
算法
一、均方预测和随机序列分解考虑随机序列使用预测定义称为的均方可预测部分。若相互独立,则是均方不可预测的。定义随机序列的新息序列V(k)基于样本观测的条件均值为0,即均方不可预测。V(k)与是正交的,即。二、卡尔曼滤波输入观测量,对进行估计得到1.系统模型状态方程观测方程其中,:状态向量,:观测向量,:状态噪声,,高斯白噪声:观测噪声,,高斯白噪声:状态转移矩阵,:观测矩阵,相关性质:(1)乘积率:
- 提笔惊鸿的小时光
星辰儿sy
阳光正好,微风不燥,很nice的天气~洗完头发,搬把小椅子坐在阳台上,阳光撒下来,世界都明亮了呢。早上睡到自然醒,上了一节应用随机过程,老师说起上次交的作业,说有一个同学文件名格式不对,别人都是word版,就那个同学是什么mdf版的,我心想谁这么傻。然后他就说学号尾号是214的,是个女生。我的妈妈耶,这不是我吗...我默默举起了手,场面一度陷入尴尬,结果老师说就记住你的学号了,情人节嘛。嘻嘻,好吧
- 马尔可夫算法及其实例(预测类模型)
爱静的龙猫
算法
马尔科夫预测模型是一种基于马尔科夫过程的预测方法。马尔科夫过程是一类具有马尔科夫性质的随机过程,即未来的状态只依赖于当前状态,而与过去状态无关。这种过程通常用状态空间和状态转移概率矩阵来描述。在马尔科夫预测模型中,系统被建模为处于一系列离散状态之一的马尔科夫链。每个状态表示系统可能的一个状态或情境,状态之间的转移由概率矩阵定义。这个概率矩阵描述了系统从一个状态转移到另一个状态的可能性。后无效性,马
- 频率域滤波图像复原的python实现——数字图像处理
筱筱西雨
图像处理python开发语言深度学习opencv图像处理
原理维纳滤波的原理是基于统计方法,旨在通过最小化信号的估计误差来改善信号的质量。它在处理具有噪声干扰的信号时特别有效。维纳滤波旨在从受噪声干扰的信号中恢复原始信号。它假设信号和噪声都是随机过程,并且它们的统计特性是已知的或可估计的。维纳滤波器的设计基于最小化输出和所需信号之间的均方误差(MSE)。数学原理假设x(n)是原始信号,d(n)是观测到的受噪声干扰的信号,y(n)是滤波器的输出。那么,噪声
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置