使用tensorflow处理csv文件

源代码

 

from numpy import genfromtxt
import numpy as np
import csv
from itertools import islice
import tensorflow as tf

SUMMARY_DIR = "log/slope_log"
TENSOR_NUM = 100
ACC_ELM_NUM = 1000
CSV_FILE = "BMIdata.csv"


def file_len(fname):
    with open(fname)as f:
        # count = len(open(filepath, 'r').readlines()) 可以统计文件的行数,但是比较慢
        # enumerate 统计文件的行数
        for i, l in enumerate(f):
            pass
    return i + 1

def main():
    filename_queue = tf.train.string_input_producer([CSV_FILE])
    file_length = file_len(CSV_FILE)
    reader = tf.TextLineReader(skip_header_lines=7)
    key, value = reader.read(filename_queue)

    print(key)
    print(value)

    # Default values, in case of empty columns. Also specifies the type of the
    # decoded result.
    # 定义列
    record_defaults = [['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null'], ['null']]
    # record_defaults = [['null'], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]

    # 编码
    time, acc_x_s, acc_y_s, acc_z_s, acc_x_g, acc_y_g, acc_z_g, status0, status1, status2, status3, time_sensor, comment = tf.decode_csv(value, record_defaults)

    features = tf.stack([time, acc_x_s, acc_y_s, acc_z_s, acc_x_g, acc_y_g, acc_z_g, status0, status1, status2, status3, time_sensor, comment])
    print(features)

    with tf.name_scope('input'):
        tf_acc_x = tf.placeholder(tf.float32, name="tf_Acc_X-input")
        tf_acc_y = tf.placeholder(tf.float32, name="tf_Acc_Y-input")
        tf_acc_z = tf.placeholder(tf.float32, name="tf_Acc_Z-input")
    tf.summary.scalar('tf_Acc_X', tf_acc_x)
    tf.summary.scalar('tf_Acc_Y', tf_acc_y)
    tf.summary.scalar('tf_Acc_Z', tf_acc_z)

    init_op = tf.global_variables_initializer()
    local_init_op = tf.local_variables_initializer()  # local variables like epoch_num, batch_size 可以不初始化local

    merged_summary_op = tf.summary.merge_all()

    with tf.Session() as sess:
        sess.run(init_op)
        sess.run(local_init_op)

        #写文件到log中
        summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)

        total_step = 0

        #以下是读取数据文件
        coord = tf.train.Coordinator()  # 创建一个协调器,管理线程
        threads = tf.train.start_queue_runners(coord=coord)  # 启动QueueRunner, 此时文件名队列已经进队。
        try:
            for i in range(file_length):
                acc_x_item = tf.string_to_number(acc_x_s, tf.float32)

                # #加上decode可以去掉字符串前面的b
                # acc_x_item = sess.run(tf_acc_x_tmp).decode()
                # acc_x_item = acc_x_item.replace(' ', '').replace('\n', ',').replace('\t', '').replace('\'', '')
                # print('acc_x_item: ', sess.run(acc_x_item))

                acc_y_item = tf.string_to_number(acc_y_s, tf.float32)
                acc_z_item = tf.string_to_number(acc_z_s, tf.float32)

                tf_acc_x_var, tf_acc_y_var, tf_acc_z_var = sess.run([acc_x_item, acc_y_item, acc_z_item])

                print('total_step: ', i, ', acc_x_item: ', tf_acc_x_var, ', acc_y_item: ', tf_acc_y_var, ', acc_z_item: ', tf_acc_z_var)

                #添加到tensorboard
                summary_str = sess.run(merged_summary_op, feed_dict={tf_acc_x: tf_acc_x_var, tf_acc_y: tf_acc_y_var, tf_acc_z: tf_acc_z_var})
                summary_writer.add_summary(summary_str, total_step)
        
        except tf.errors.OutOfRangeError:
            print('Epochs Complete!')
        finally:
            coord.request_stop()
        coord.request_stop()
        coord.join(threads)
    summary_writer.close()

    
if __name__ == '__main__':
    main()

 

打印结果

total_step:  0 , acc_x_item:  0.6147 , acc_y_item:  -0.5142 , acc_z_item:  10.0179
total_step:  1 , acc_x_item:  0.5818 , acc_y_item:  -0.5429 , acc_z_item:  10.1107
total_step:  2 , acc_x_item:  0.5842 , acc_y_item:  -0.5387 , acc_z_item:  10.1299
total_step:  3 , acc_x_item:  0.5836 , acc_y_item:  -0.5357 , acc_z_item:  10.073
total_step:  4 , acc_x_item:  0.6147 , acc_y_item:  -0.5531 , acc_z_item:  10.0149
total_step:  5 , acc_x_item:  0.6554 , acc_y_item:  -0.498 , acc_z_item:  10.0054
total_step:  6 , acc_x_item:  0.68 , acc_y_item:  -0.4788 , acc_z_item:  10.1167
total_step:  7 , acc_x_item:  0.6961 , acc_y_item:  -0.4603 , acc_z_item:  10.1778
total_step:  8 , acc_x_item:  0.641 , acc_y_item:  -0.4645 , acc_z_item:  10.1095
total_step:  9 , acc_x_item:  0.6063 , acc_y_item:  -0.4848 , acc_z_item:  10.0946
total_step:  10 , acc_x_item:  0.677 , acc_y_item:  -0.5285 , acc_z_item:  10.1418
total_step:  11 , acc_x_item:  0.6871 , acc_y_item:  -0.5142 , acc_z_item:  10.1113
total_step:  12 , acc_x_item:  0.6087 , acc_y_item:  -0.5351 , acc_z_item:  10.0114
total_step:  13 , acc_x_item:  0.5297 , acc_y_item:  -0.5584 , acc_z_item:  10.0904
total_step:  14 , acc_x_item:  0.5884 , acc_y_item:  -0.565 , acc_z_item:  10.1652
total_step:  15 , acc_x_item:  0.6381 , acc_y_item:  -0.5836 , acc_z_item:  9.9886
total_step:  16 , acc_x_item:  0.5764 , acc_y_item:  -0.5836 , acc_z_item:  9.8509
total_step:  17 , acc_x_item:  0.5638 , acc_y_item:  -0.5387 , acc_z_item:  9.9563
total_step:  18 , acc_x_item:  0.6135 , acc_y_item:  -0.5944 , acc_z_item:  10.1323
total_step:  19 , acc_x_item:  0.5638 , acc_y_item:  -0.5393 , acc_z_item:  10.2801
total_step:  20 , acc_x_item:  0.516 , acc_y_item:  -0.4178 , acc_z_item:  10.486
total_step:  21 , acc_x_item:  0.5387 , acc_y_item:  -0.5094 , acc_z_item:  10.4956
total_step:  22 , acc_x_item:  0.6494 , acc_y_item:  -0.5692 , acc_z_item:  10.2065
total_step:  23 , acc_x_item:  0.6273 , acc_y_item:  -0.5339 , acc_z_item:  9.7432


进程已结束,退出代码0

 

测试文件

 

# 
# 
# 
# 
# 
#  
# Time Stamp,Accel X-axis - M/s2,Accel Y-axis - M/s2,Accel Z-axis - M/s2,Accel X-axis - g,Accel Y-axis - g,Accel Z-axis - g,Accel Interrupt Status Byte 0 - Hex,Accel Interrupt Status Byte 1 - Hex,Accel Interrupt Status Byte 2 - Hex,Accel Interrupt Status Byte 3 - Hex,Sensor Time - µs,  
14:58:45.6089935,      0.6147,     -0.5142,     10.0179,      0.0627,     -0.0524,      1.0215,          00,          00,          00,          00,    173601046.1513,  
14:58:45.6089935,      0.5818,     -0.5429,     10.1107,      0.0593,     -0.0554,      1.0310,          00,          00,          00,          00,    173611045.8313,  
14:58:45.6150098,      0.5842,     -0.5387,     10.1299,      0.0596,     -0.0549,      1.0330,          00,          00,          00,          00,    173621045.5113,  
14:58:45.6340593,      0.5836,     -0.5357,     10.0730,      0.0595,     -0.0546,      1.0272,          00,          00,          00,          00,    173631045.1913,  
14:58:45.6360979,      0.6147,     -0.5531,     10.0149,      0.0627,     -0.0564,      1.0212,          00,          00,          00,          00,    173641005.8100,  
14:58:45.6451799,      0.6554,     -0.4980,     10.0054,      0.0668,     -0.0508,      1.0203,          00,          00,          00,          00,    173651005.4900,  
14:58:45.6551173,      0.6800,     -0.4788,     10.1167,      0.0693,     -0.0488,      1.0316,          00,          00,          00,          00,    173661005.1700,  
14:58:45.6661442,      0.6961,     -0.4603,     10.1778,      0.0710,     -0.0469,      1.0378,          00,          00,          00,          00,    173671004.8500,  
14:58:45.6801842,      0.6410,     -0.4645,     10.1095,      0.0654,     -0.0474,      1.0309,          00,          00,          00,          00,    173681004.5300,  
14:58:45.6841937,      0.6063,     -0.4848,     10.0946,      0.0618,     -0.0494,      1.0294,          00,          00,          00,          00,    173690965.1488,  
14:58:45.6952215,      0.6770,     -0.5285,     10.1418,      0.0690,     -0.0539,      1.0342,          00,          00,          00,          00,    173700964.8288,  
14:58:45.7072535,      0.6871,     -0.5142,     10.1113,      0.0701,     -0.0524,      1.0311,          00,          00,          00,          00,    173710964.5088,  
14:58:45.7153667,      0.6087,     -0.5351,     10.0114,      0.0621,     -0.0546,      1.0209,          00,          00,          00,          00,    173720964.1888,  
14:58:45.7333240,      0.5297,     -0.5584,     10.0904,      0.0540,     -0.0569,      1.0289,          00,          00,          00,          00,    173730924.8075,  
14:58:45.7363310,      0.5884,     -0.5650,     10.1652,      0.0600,     -0.0576,      1.0366,          00,          00,          00,          00,    173740924.4875,  
14:58:45.7434377,      0.6381,     -0.5836,      9.9886,      0.0651,     -0.0595,      1.0186,          00,          00,          00,          00,    173750963.2288,  
14:58:45.7554724,      0.5764,     -0.5836,      9.8509,      0.0588,     -0.0595,      1.0045,          00,          00,          00,          00,    173760923.8475,  
14:58:45.7654083,      0.5638,     -0.5387,      9.9563,      0.0575,     -0.0549,      1.0153,          00,          00,          00,          00,    173770923.5275,  
14:58:45.7824551,      0.6135,     -0.5944,     10.1323,      0.0626,     -0.0606,      1.0332,          00,          00,          00,          00,    173780923.2075,  
14:58:45.7844589,      0.5638,     -0.5393,     10.2801,      0.0575,     -0.0550,      1.0483,          00,          00,          00,          00,    173790922.8875,  
14:58:45.7954886,      0.5160,     -0.4178,     10.4860,      0.0526,     -0.0426,      1.0693,          00,          00,          00,          00,    173800883.5063,  
14:58:45.8055146,      0.5387,     -0.5094,     10.4956,      0.0549,     -0.0519,      1.0703,          00,          00,          00,          00,    173810883.1863,  
14:58:45.8155418,      0.6494,     -0.5692,     10.2065,      0.0662,     -0.0580,      1.0408,          00,          00,          00,          00,    173820882.8663,  
14:58:45.8336015,      0.6273,     -0.5339,      9.7432,      0.0640,     -0.0544,      0.9935,          00,          00,          00,          00,    173830843.4850,  
14:58:45.8355990,      0.7661,     -0.6099,      9.5199,      0.0781,     -0.0622,      0.9708,          00,          00,          00,          00,    173840843.1650,  
14:58:45.8466263,      0.8266,     -0.6901,      9.4631,      0.0843,     -0.0704,      0.9650,          00,          00,          00,          00,    173850842.8450,  

 

 

 

 

 

参考链接

 

http://www.jb51.net/article/134146.htm

 

你可能感兴趣的:(tensorflow)