(四)Tensorboard学习——mnist_with_summaries.py

    Tensorboard是一个可视化工具,通过mnist_with_summaries.py这个文件可以对其有个很好的了解!

    我对其进行了比较详细的注释!

    这个网址的视频非常好,下面这个视频对这个文件有详细的讲解:

    http://v.youku.com/v_show/id_XMjczNjQzMjY5Mg==.html

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

FLAGS = None #全局变量

  
 # We can't initialize these variables to 0 - the network will get stuck.
def weight_variable(shape):
  """Create a weight variable with appropriate initialization."""
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  """Create a bias variable with appropriate initialization."""
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)

#一个通用的用于构建一个layer层节点,且包含张量汇总
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
  """Reusable code for making a simple neural net layer.

  It does a matrix multiply, bias add, and then uses relu to nonlinearize.
  It also sets up name scoping so that the resultant graph is easy to read,
  and adds a number of summary ops.
  """
  # Adding a name scope ensures logical grouping of the layers in the graph.
  with tf.name_scope(layer_name):
    # This Variable will hold the state of the weights for the layer
    with tf.name_scope('weights'):
      weights = weight_variable([input_dim, output_dim])
      variable_summaries(weights)
    with tf.name_scope('biases'):
      biases = bias_variable([output_dim])
      variable_summaries(biases)
    with tf.name_scope('Wx_plus_b'):
      preactivate = tf.matmul(input_tensor, weights) + biases
      tf.summary.histogram('pre_activations', preactivate)
    activations = act(preactivate, name='activation')
    tf.summary.histogram('activations', activations)
    return activations  

def train():
  # 加载数据
  mnist = input_data.read_data_sets(FLAGS.data_dir,
                                    one_hot=True,
                                    fake_data=FLAGS.fake_data)
	
 #这个函数使用了上面的mnist,没有移动到外面	
  def feed_dict(train):  #这个train=true  or  false 不同情况  传入的数据不同
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train or FLAGS.fake_data: #训练数据
      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)#分批次读入
      k = FLAGS.dropout  #训练的时候drop
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0      #测试的时候drop固定为1
    return {x: xs, y_: ys, keep_prob: k}
	
	
  #打开会话
  sess = tf.InteractiveSession()
  
  # 建立网络模型
  # 输入节点
  with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

  # 输入变形,只用于可视化图像
  with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)
  
  #调用函数生成节点tf.name_scope('layer1') 且汇总里面的张量
  hidden1 = nn_layer(x, 784, 500, 'layer1') 

  #dropout节点 并汇总scalar:keep_prob
  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    tf.summary.scalar('dropout_keep_probability', keep_prob)
    dropped = tf.nn.dropout(hidden1, keep_prob)

  # Do not apply softmax activation yet, see below.
  #调用函数生成节点tf.name_scope('layer2') 且汇总里面的张量
  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity) 

  #交叉熵节点 里面还有total节点,汇总交scalar:叉熵的均值
  with tf.name_scope('cross_entropy'):
    # The raw formulation of cross-entropy,
    #
    # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
    #                               reduction_indices=[1]))
    #
    # can be numerically unstable.
    #
    # So here we use tf.nn.softmax_cross_entropy_with_logits on the
    # raw outputs of the nn_layer above, and then average across
    # the batch.
    diff = tf.nn.softmax_cross_entropy_with_logits(y, y_)
    with tf.name_scope('total'):
      cross_entropy = tf.reduce_mean(diff)
  tf.summary.scalar('cross_entropy', cross_entropy)

  #训练节点
  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
        cross_entropy)#自适应优化器
 
 #accuracy节点  里面有两个节点,最后汇总scalar:平均准确率
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', accuracy)

  #汇总所有节点
  # Merge all the summaries and write them out to /tmp/mnist_logs (by default)
  merged = tf.summary.merge_all()  
  #训练时
  train_writer = tf.train.SummaryWriter(FLAGS.log_dir + '/train',
                                        sess.graph) #这里不仅汇总节点,而且会生成计算图(因为有graph)
  #测试时
  test_writer = tf.train.SummaryWriter(FLAGS.log_dir + '/test') #仅汇总节点
  
  #训练前初始化变量
  tf.global_variables_initializer().run()

  # Train the model, and also write summaries.
  # Every 10th step, measure test-set accuracy, and write test summaries
  # All other steps, run train_step on training data, & add training summaries

  for i in range(FLAGS.max_steps):
    if i % 10 == 0:  # 每10批数据 Record summaries and test-set accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))#merged是汇总
      test_writer.add_summary(summary, i)                                    #test_writer实例,将汇总写入test部分
      print('Accuracy at step %s: %s' % (i, acc))
    else:  # Record train set summaries, and train
      if i % 100 == 99:  # Record execution stats
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict(True),
                              options=run_options,
                              run_metadata=run_metadata)           #merged是汇总
        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)#train_writer实例,将汇总写入train部分
        train_writer.add_summary(summary, i)                       #train_writer实例,将汇总写入train部分,一定要加上i(即step)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))  #merged是汇总
        train_writer.add_summary(summary, i)                     #train_writer实例,将汇总写入train部分,一定要加上i(即step)
  train_writer.close()     #关闭实例
  test_writer.close()      #关闭实例


def main(_):
  if tf.gfile.Exists(FLAGS.log_dir):
    tf.gfile.DeleteRecursively(FLAGS.log_dir)
  tf.gfile.MakeDirs(FLAGS.log_dir)
  train()


if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                      default=False,
                      help='If true, uses fake data for unit testing.')
  parser.add_argument('--max_steps', type=int, default=1000,
                      help='Number of steps to run trainer.')
  parser.add_argument('--learning_rate', type=float, default=0.001,
                      help='Initial learning rate')
  parser.add_argument('--dropout', type=float, default=0.9,
                      help='Keep probability for training dropout.')
  parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data',
                      help='Directory for storing input data')
  parser.add_argument('--log_dir', type=str, default='/tmp/tensorflow/mnist/logs/mnist_with_summaries',
                      help='Summaries log directory')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

你可能感兴趣的:(Tensorflow)