- python爬取自如网房源信息
2401_87368790
python开发语言
本次爬取自如网房源信息所用到的知识点:requestsget请求lxml解析htmlXpathMongoDB存储正文分析目标站点url:http://hz.ziroom.com/z/nl/z3.html?p=2的p参数控制分页get请求获取单页源码--coding:utf-8--importrequestsimporttimefromrequests.exceptionsimportRequest
- 2024.3.26 腾讯魔方工作室—golang后台开发面经
2301_79125642
java
题解|#将两个SELECT语句结合起来(一)#selectprod_id,quantityfromOrderItemswherequanti2024.3.26腾讯魔方工作室—golang后台开发面经全程拷打,深挖项目,几乎不问八股,有些问题想不太清楚了,只是凭着模糊记忆把大体问题写下。做了三个项目题解|#求int型正整数在内存中存储时1的个数#importjava.util.Scanner;//注
- 深入探讨服务器虚拟化:架构、技术与应用
码上飞扬
服务器虚拟化K8SDockerXenKVM
1.引言在现代IT基础设施中,服务器虚拟化已成为一种不可或缺的技术。它不仅提高了资源利用率,还增强了系统的灵活性和可管理性。随着企业对高效、灵活和可扩展IT环境的需求不断增加,服务器虚拟化技术的应用愈发广泛。本文将深入探讨服务器虚拟化的基本概念、架构、常见技术及其实际应用,帮助读者更好地理解这一重要技术。2.什么是服务器虚拟化?服务器虚拟化是一种将物理服务器划分为多个虚拟服务器(虚拟机,VM)的技
- 【黑龙江乡镇界】面图层arcgis数据shp格式乡镇名称和编码wgs84无偏移内容测评
鸿业远图科技
arcgis
本文将详细讲解与“最新黑龙江乡镇界面图层arcgis数据shp格式乡镇名称和编码wgs84无偏移”相关的知识点,包括GIS基础、ArcGIS软件、SHP文件格式、WGS84坐标系统以及乡镇行政数据的重要性。GIS基础GIS(GeographicInformationSystem,地理信息系统)是一种用于采集、存储、管理、分析和展示所有类型地理数据的系统。它整合了地图、数据库、统计分析和计算机图形等
- Maven 在尝试连接到 Maven Central 仓库超时的解决方案和排查步骤
天之涯上上
mavenjava
Maven在尝试连接到MavenCentral仓库时超时。以下是一些可能的解决方案和排查步骤:1.检查网络连接确保你的网络连接正常,并且能够访问外网。Ping测试:pingrepo.maven.apache.orgTelnet测试:telnetrepo.maven.apache.org4432.配置代理如果你在公司网络中使用代理服务器,需要配置Maven使用代理。编辑settings.xml找到或
- python做并行计算_python做并行计算可以吗
角动量不守恒
python做并行计算
python可以做并行计算,下面是相关介绍:一、概览ParallelPython是一个python模块,提供在SMP(具有多个处理器或多核的系统)和集群(通过网络连接的计算机)上并行执行python代码的机制。它轻巧,易于安装和与其他python软件集成。ParallelPython是一个用纯Python编写的开源和跨平台模块。二、特性在SMP和集群上并行执行python代码易于理解和实现基于Jo
- python并行计算
weixin_30894389
0.基础并行/发:multiprocessing/threading1.concurrent2.并发:asynico3.Ipython下的并行计算:使用ipyparallel库的IPython提供了前所未有的能力,将科学Python的探索能力与几乎即时访问多个计算核心相结合。系统可以直观地与本地或网络的计算节点集群进行交互,而不管集群的实现方式如何。这种易于交互使用帮助IPython和Python
- Kafka 消息存储与销毁机制
AI天才研究院
大数据AI人工智能计算kafkawpf分布式
Kafka消息存储与销毁机制文章目录Kafka消息存储与销毁机制1.背景介绍1.1什么是Kafka1.2Kafka的基本概念解释2.核心概念与联系2.1消息存储机制2.2消息销毁机制2.3分区与副本机制3.核心算法原理具体操作步骤3.1消息存储过程3.2消息消费过程3.3消息销毁过程3.4分区副本同步过程4.数学模型和公式详细讲解举例说明4.1消息存储模型4.2消息销毁模型4.3分区副本同步模型5
- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- PointNet++改进策略 :模块改进 | PointCAT, 使用交叉注意力机制来提升3D点云任务中提升模型精度
我是瓦力
PointNet++改进策略3d深度学习人工智能计算机视觉transformer
论文题目:PointCAT:Cross-AttentionTransformerforPointCloud通讯地址:南京理工大学代码地址:https://github.com/xincheng-yang/PointCAT.PointCAT架构:PointCAT提出了一种基于交叉注意力机制的Transformer网络,专门用于点云表示。它通过两个不同的多尺度特征分支,利用交叉注意力机制来交换信息。通
- redis清空缓存
奔跑吧邓邓子
高效运维缓存redis数据库
提示:“奔跑吧邓邓子”的高效运维专栏聚焦于各类运维场景中的实际操作与问题解决。内容涵盖服务器硬件(如IBMSystem3650M5)、云服务平台(如腾讯云、华为云)、服务器软件(如Nginx、Apache、GitLab、Redis、Elasticsearch、Kubernetes、Docker等)、开发工具(如Git、HBuilder)以及网络安全(如挖矿病毒排查、SSL证书配置)等多个方面。无论
- ROS学习(5)可视化和调试工具一
敲代码的雪糕
ROSROS
文章目录前言一、调试ROS节点1、使用gdb调试器调试节点2、在节点启动时调用gdb调试器3、在节点启动时调用valgrind分析节点4、设置ROS节点core文件存储二、日志消息1.输出日志消息2.调试消息级别3.为特定节点配置调试消息级别4.消息命名5.按条件显示消息与过滤消息6.显示消息的方式7.使用rqt_console和rqt_logger_level在运行时修改调试级别总结前言ROS自
- ubuntu改变swap存储空间,遇到 fallocate 失败: 文本文件忙
kaikai_1019
LINUXRK3588ubuntulinux运维
ubuntu改变swap存储空间,遇到fallocate失败:文本文件忙sudofallocate-l16G/swapfilefallocate:fallocate失败:文本文件忙这种情况是swap空间正在使用,需要先关闭swap分区:sudoswapoff/swapfilesudofallocate-l16G/swapfilesudochmod600/swapfilesudomkswap/swa
- AI-知识库搭建(一)腾讯云向量数据库使用
CJ点
人工智能GPT向量数据库知识库
一、AI知识库将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。二、腾讯云向量数据库向量数据库_大模型知识库_向量数据存储_向量数据检索-腾讯云腾讯云向量数据库(TencentCloudVectorDB)是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持
- JavaEE进阶知识学习----SpringBoot高级(五)SpringBoot与消息
四川码匠
SpringBoot
SpringBoot与消息概述在大多数应用中,可以通过消息服务来提升系统异步通信,扩展解耦能力。在消息服务中存在两个重要的概念:消息代理(messagebroker)和目的地(destination),当消息发送者发送消息以后,将由消息代理接管,消息代理保证消息传递到指定目的地消息队列主要有两种形式的目的地:队列(queue:点对点消息通信),主题(topic:发布/订阅消息通信)点对点式消息发送
- JDK动态代理在拦截器和声明式接口中的应用
码到三十五
JAVA核心springbootspringcloud
❃博主首页:「码到三十五」,同名公众号:「码到三十五」,wx号:「liwu0213」☠博主专栏:♝博主的话:搬的每块砖,皆为峰峦之基;公众号搜索「码到三十五」关注这个爱发技术干货的coder,一起筑基一、动态代理概念回顾Java动态代理技术是基于反射机制的基础。核心在于利用反射机制和接口编程在运行时动态生成代理类,并通过InvocationHandler接口实现代理逻辑的灵活扩展。通过动态代理,J
- 深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
- PyTorch 实战教程:从模型搭建到训练的每一步
AI_小站
pytorch人工智能pythontransformer深度学习大模型LLM
用深度学习搞事情,模型搭建和训练是绕不开的两步。而PyTorch,作为一个“又灵活又好用”的深度学习框架,简直就是写代码的快乐源泉。今天我们就从0到1,实战PyTorch的模型搭建和训练流程。说白了,看完你就能自己搭个神经网络,喂点数据进去,再让它干点活。安装PyTorch要用PyTorch,得先装上它。PyTorch的安装稍微有点讲究,主要是要根据你的硬件选择CPU版本还是GPU版本。基本安装命
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 4-2 计算机视觉-卷积神经网络-基本网络组件
沉睡的小卡比兽
AI基础知识cnn卷积核端到端训练计算机视觉卷积神经网络
1、为什么卷积核一般都是奇数?2、由哪些层组成了基本的卷积神经网络,作用分别是什么?3、卷积层和池化层有什么区别?4、什么是端到端学习end-to-end?1、为什么卷积核一般都是奇数?(1)保护位置信息:保证锚点刚好在中间,方便以模块中心为标准进行滑动卷积,避免了位置信息发生偏移(2)padding时的对称性:保证padding时图像的两边依然对齐(3)一些历史尝试的经验,如边缘检测等,还有pa
- 清华大学提出Pointformer:基于Transformer的3D目标检测
Amusi(CVer)
计算机视觉论文速递Transformer3D目标检测深度学习计算机视觉机器学习人工智能自动驾驶
没错!Transformer的"魔爪"已经伸向3D目标检测了。Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。注:文末附【Transformer】和【3D目标检测】学习交流群Transformer最近在3D点云方向应用的工作可以看一下:牛津大学等提出:PointTransformer清华大
- Python之JSON数据结构
CL.LIANG
python基础pythonjson数据结构
JSON数据结构介绍JSON(JavaScriptObjectNotation)优势:1.易于阅读和编写JSON的结构直观、简单,类似于键值对的形式,易于人类阅读和编写。与XML等数据格式相比,JSON的语法更简洁,没有复杂的标记符号。2.轻量化JSON格式相比其他数据格式(如XML),更简洁,没有多余的标记,数据体积较小,这使得数据传输更加高效,尤其是在网络应用中。3.与JavaScript天然
- 【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
IT古董
人工智能深度学习机器学习深度学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种深度学习模型框架,由IanGoodfellow等人在2014年提出。GAN由生成器(Generator)和判别器(Discriminator)两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN在图像生成、文本生成、数据增强等领域中有广泛应用。核心思想GAN的核心是两个神经
- 【SpringBoot】SpringBoot:实现文件上传和下载功能
E绵绵
Everythingspringboot后端java
文章目录引言项目初始化添加依赖配置文件存储位置实现文件上传功能创建文件上传控制器创建上传页面实现文件下载功能创建文件下载控制器安全性和最佳实践文件大小限制文件类型验证文件名和路径验证文件下载时的安全性测试与部署示例:编写单元测试部署结论引言文件上传和下载是Web应用程序中常见的需求。在现代应用中,用户需要上传各种类型的文件,如图片、文档、视频等,或者下载生成的报告和数据文件。SpringBoot通
- 基于Python的天气数据可视化平台
q.q 1102255374
python信息可视化开发语言
摘要:随着社会多元化的不断发展,天气数据问题不可被简单的理解为是科学问题,更多的是环境问题,可以直接影响到人民的日常生活,甚至对一个国家的政治经济带来影响,由此可见,天气预测是一项非常重要的行业。基于此,我们就需要开发一个可视化的、综合的、方便人们查看的项目。基于Python的天气数据可视化设计与实现,通过使用基于Python的网络爬虫技术,能在短时内提取有价值的信息数据。然后根据数据的形式进行整
- InceptionV1实现猴痘病识别案例
小叮当爱咖啡
计算机视觉人工智能神经网络深度学习
本文为为365天深度学习训练营内部文章原作者:K同学啊InceptionModule是InceptionV1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征为了改善计算量大的问题,使用了1*1的卷积核实现降维操作,以此来减小网络的参数量与计算量1*1卷积核的作用:降低输入特征图的通道数,减小网络的参数量与计算量最后InceptionModule基本由1*1卷积,3*3卷积
- Kafka:架构与核心机制
J老熊
kafka架构分布式面试系统架构后端
ApacheKafka是一种高吞吐量的分布式消息队列,广泛应用于实时数据流处理和大数据架构中。本文将详细探讨Kafka的架构、Replica管理、消息读取、分区策略、可靠性保障等核心机制。1.Kafka的架构1.1组件概述Kafka的架构由多个组件构成,主要包括以下部分:Broker:Kafka集群中的服务器,每个Broker存储一部分消息。Kafka集群通常由多个Broker组成,以提高可用性和
- 接口 V2 完善:基于责任链模式、Canal 监听 Binlog 实现数据库、缓存的库存最终一致性
Hello Dam
Java开发#Java功能开发实战#场快订SaaS平台责任链模式数据库缓存数据一致性CanalBinlog
本文介绍了一种使用Canal监听MySQLBinlog实现数据库与缓存最终一致性的方案。文章首先讲解了如何修改Canal配置以适应订单表和时间段表的变化,然后详细描述了通过责任链模式优化消息处理逻辑的方法,确保能够灵活应对不同数据表的更新需求。最后,展示了如何利用RocketMQ消费Canal消息并通过责任链处理器同步更新缓存,从而保证数据的一致性。此方法有效提升了系统的可扩展性和维护效率。️He
- 【人工智能时代】- 开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate
xiaoli8748_软件开发
人工智能时代人工智能开源数据库
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。什么是向量数据库?向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =