以太网原理

目录

  • 以太网协议工作原理
    • 以太网访问特征
    • CSMA/CD
    • 小总结
    • 以太网帧
    • IP报文格式

以太网协议工作原理

以太网访问特征

  • 共享介质信道,公平的保障信道上的工作站均能控制信道发送和接受
  • 公平竞争性介质访问方法

CSMA/CD

  • 载波侦听多路访问/冲突检测
  • 多路访问
    • 网络上所有的工作站共享数据信道,并且以广播方式发送
      以太网原理_第1张图片
  • 载波侦听
    • 发送数据前侦听总线上是否有数据传输
    • 若无数据传输,立即发送准备好的数据
    • 若有数据传输,则不发送数据
  • 冲突检测
    • 发送数据过程中还要不停地检测自己发送的数据,有没有再传输的过程中与其他工作站的数据发生冲突
    • 退避算法:随即延迟值
      以太网原理_第2张图片

小总结

先听后说,边听边说;一旦冲突,立即停说;等待时机,然后再说

以太网帧

来自线路的二进制数据包称作一个帧。从物理线路上看到的帧,除其他信息外,还可看到前导码和帧开始符。任何物理硬件都会需要这些信息。
下面的表格显示了在以1500个八比特组为MTU传输(有些吉比特以太网甚至更高速以太网支持更大的帧,称作巨型帧)时的完整帧格式。一个八比特组是八个位组成的数据(也就是现代计算机的一个字节)。
以太网原理_第3张图片
Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式了。

0x0000-0x05DC IEEE 802.3 长度
0x0101-0x01FF 实验
0x0600 XEROX NS IDP
0x0660 0x0661DLOG
0x0800 网际协议(IP)
0x0801 X.75 Internet
0x0802 NBS Internet
0x0803 ECMA Internet
0x0804 Chaosnet
0x0805 X.25 Level 3
0x0806 地址解析协议(ARP : Address Resolution Protocol)
0x0808 帧中继 ARP (Frame Relay ARP) [RFC1701]
0x6559 原始帧中继(Raw Frame Relay) [RFC1701]
0x8035 动态 DARP (DRARP:Dynamic RARP)反向地址解析协议(RARP:Reverse Address Resolution Protocol)
0x8037 Novell Netware IPX
0x809B EtherTalk
0x80D5 IBM SNA Services over Ethernet
0x80F3 AppleTalk 地址解析协议(AARP:AppleTalk Address Resolution Protocol)
0x8100 以太网自动保护开关(EAPS:Ethernet Automatic Protection Switching)
0x8137 因特网包交换(IPX:Internet Packet Exchange)
0x814C 简单网络管理协议(SNMP:Simple Network Management Protocol)
0x86DD 网际协议v6(IPv6,Internet Protocol version 6)
0x8809 OAM

前导码和帧开始符
一个帧以7个字节的前导码和1个字节的帧开始符作为帧的开始。快速以太网之前,在线路上帧的这部分的位模式是10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101011。由于在传输一个字节时最低位最先传输(LSB),因此其相应的16进制表示为0x55 0x55 0x55 0x55 0x55 0x55 0x55 0xD5
10/100M 网卡(MIIPHY)一次传输4位(一个半字)。因此前导符会成为7组0x5+0x5,而帧开始符成为0x5+0xD。1000M网卡(GMII)一次传输8位,而10Gbit/s(XGMII) PHY芯片一次传输32位。 注意当以octet描述时,先传输7个01010101然后传输11010101。由于8位数据的低4位先发送,所以先发送帧开始符的0101,之后发送1101。
报头
报头包含源地址和目标地址的MAC地址,以太类型字段和可选的用于说明VLAN成员关系和传输优先级的IEEE 802.1QVLAN 标签。
帧校验码
帧校验码是一个32位循环冗余校验码,以便验证帧数据是否被损坏。
帧间距

IP报文格式

IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。
ip报文
以太网原理_第4张图片
  版本:IP协议的版本,目前的IP协议版本号为4,下一代IP协议版本号为6。

  • 首部长度:IP报头的长度。固定部分的长度(20字节)和可变部分的长度之和。共占4位。最大为1111,即10进制的15,代表IP报头的最大长度可以为15个32bits(4字节),也就是最长可为15*4=60字节,除去固定部分的长度20字节,可变部分的长度最大为40字节。

  • 服务类型:Type Of Service。占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。服务类型字段声明了数据报被网络系统传输时可以被怎样处理。例如:TELNET协议可能要求有最小的延迟,FTP协议(数据)可能要求有最大吞吐量,SNMP协议可能要求有最高可靠性,NNTP(Network News Transfer Protocol,网络新闻传输协议)可能要求最小费用,而ICMP协议可能无特殊要求(4比特全为0)。实际上,大部分主机会忽略这个字段,但一些动态路由协议如OSPF(Open Shortest Path First Protocol)、IS-IS(Intermediate System to Intermediate System Protocol)可以根据这些字段的值进行路由决策。

  • 总长度:IP报文的总长度。报头的长度和数据部分的长度之和。

  • 标识:唯一的标识主机发送的每一分数据报。通常每发送一个报文,它的值加一。当IP报文长度超过传输网络的MTU(最大传输单元)时必须分片,这个标识字段的值被复制到所有数据分片的标识字段中,使得这些分片在达到最终目的地时可以依照标识字段的内容重新组成原先的数据。

  • 标志:共3位。R、DF、MF三位。目前只有后两位有效,DF位:为1表示不分片,为0表示分片。MF:为1表示“更多的片”,为0表示这是最后一片。

  • 片位移:本分片在原先数据报文中相对首位的偏移位。(需要再乘以8)

  • 生存时间:IP报文所允许通过的路由器的最大数量。每经过一个路由器,TTL减1,当为0时,路由器将该数据报丢弃。TTL 字段是由发送端初始设置一个 8 bit字段.推荐的初始值由分配数字 RFC 指定,当前值为 64。发送 ICMP 回显应答时经常把 TTL 设为最大值 255。

  • 协议:指出IP报文携带的数据使用的是那种协议,以便目的主机的IP层能知道要将数据报上交到哪个进程(不同的协议有专门不同的进程处理)。和端口号类似,此处采用协议号,TCP的协议号为6,UDP的协议号为17。ICMP的协议号为1,IGMP的协议号为2.

  • 首部校验和:计算IP头部的校验和,检查IP报头的完整性。

  • 源IP地址:标识IP数据报的源端设备。

  • 目的IP地址:标识IP数据报的目的地址。

以太网原理_第5张图片

你可能感兴趣的:(FPGA)