- [深度学习论文笔记]Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation
SerendipityQYK
深度学习之医学图像分割论文深度学习transformer医学图像处理肿瘤分割人工智能
HybridWindowAttentionBasedTransformerArchitectureforBrainTumorSegmentation基于混合窗口注意力的Transformer结构脑肿瘤分割Author:HimashiPeiris,MunawarHayat,ZhaolinChen,GaryEgan,MehrtashHarandiUnit:MonashUniversitySubmitt
- [深度学习论文笔记] TransBTS: Multimodal Brain Tumor Segmentation Using Transformer 基于Transformer的多模态脑肿瘤分割
Slientsake
深度学习之医学图像分割论文深度学习pytorchpython
TransBTS:MultimodalBrainTumorSegmentationUsingTransformer基于Transformer的多模态脑肿瘤分割论文:https://arxiv.org/pdf/2103.04430代码:https://github.com/Wenxuan-1119/TransBTS发表时间:Mar2021[MICCAI2021]一、基本介绍1.1胶质瘤胶质瘤是最常见
- 深度学习论文笔记
weixin_30730053
人工智能数据库python
1.语音情感识别、人工神经网络,深度学习神经网络发展历程介绍2.语音情感识别的基本理论3.人工神经网络4.深度学习神经网络基本理论1.语音情感识别、人工神经网络,深度学习神经网络发展历程介绍深度学习常用模型:自编码器、限制玻尔兹曼机、卷积神经网络应用:图像识别、语音设别、广告推荐系统情感分类:anger,joy,sadness,surprise,disgust,fear,netural情感表现:语
- [深度学习论文笔记][arxiv 1711]Learning to Segment Every Thing
KFXW
深度学习论文笔记深度学习
[arxiv1711]LearningtoSegmentEveryThingRonghangHu,PiotrDollar,KaimingHe,TrevorDarrellandRossGirshickfromBAIR&FAIRpaperlinkMotivation这是一篇在实例分割问题(instancesegmentation)中研究扩展分割物体类别数量的论文。目前instanccesegmenta
- [深度学习论文笔记][ICCV 17]Semi Supervised Semantic Segmentation Using Generative Adversarial Net
KFXW
深度学习论文笔记深度学习图像分割
[ICCV17]SemiSupervisedSemanticSegmentationUsingGenerativeAdversarialNetworkNasimSouly,ConcettoSpampinatoandMubarakShahfromUniversityofCentralFloridaandUniversityofCataniapaperlinkMotivation第一篇将GAN应用在分
- Deep Few-Shot Learning for Hyperspectral Image Classification(2019)——深度学习论文笔记(四)
immortal12
DL论文笔记3-DCNNsfew-shotlearningHSI分类residuallearning
DeepFew-ShotLearningforHyperspectralImageClassification(2019)文章目录DeepFew-ShotLearningforHyperspectralImageClassification(2019)Abstract1.INTRODUCTION2.PROPOSEDMETHOD**A.DeepFew-ShotLearningandTrainingS
- [深度学习论文笔记]Cross-Modality Deep Feature Learning for Brain Tumor Segmentation
Slientsake
深度学习之医学图像分割论文深度学习计算机视觉人工智能肿瘤分割
Cross-ModalityDeepFeatureLearningforBrainTumorSegmentation跨通道深度特征学习在脑肿瘤分割中的应用Published:PatternRecognition2021论文:https://arxiv.org/abs/2201.02356代码: 机器学习和数字医学图像的流行,为利用深度卷积神经网络解决具有挑战性的脑肿瘤分割(BTS)任务提供了机会
- [深度学习论文笔记]Efficient embedding network for 3D brain tumor Segmentation
Slientsake
深度学习之医学图像分割论文深度学习人工智能pytorch
Efficientembeddingnetworkfor3DbraintumorSegmentation一种高效的脑肿瘤三维分割嵌入网络英国皇家医科大学Nov2020MultimodalBrainTumorSegmentationChallenge2020(BRATS)BrainLes2020论文:https://arxiv.org/abs/2107.09842摘要: 基于深度学习的三维医学图像
- [深度学习论文笔记]Brain tumor segmentation with self-ensembled,deeply-supervised 3D U-net neural networks
Slientsake
深度学习之医学图像分割论文深度学习pythonpytorch
Braintumorsegmentationwithself-ensembled,deeply-supervised3DU-netneuralnetworks:aBraTS2020challengesolution.使用自集成、深度监督的3DU-net神经网络的脑肿瘤分割:BraTS2020挑战解决方案论文:https://arxiv.org/abs/2011.01045代码:https://gi
- 深度学习论文笔记(注意力机制)——CBAM: Convolutional Block Attention Module
菜到怀疑人生
深度学习
文章目录主要工作methodchannelattentionmodulespatialattentionmodule如何结合spatialattentionmodule与channelattentionmodule实验主要工作提出了一种具有注意力机制的前馈卷积神经网络——ConvolutionalBlockAttentionModule(CBAM)method注意力机制是人类视觉所特有的大脑信号处
- [深度学习论文笔记]Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation
Slientsake
深度学习之医学图像分割论文多模态融合深度学习人工智能医学图像分割肿瘤分割
Modality-awareMutualLearningforMulti-modalMedicalImageSegmentation多模态医学图像分割中的模态感知互学习Published:Jul2021MICCAI2021论文:https://arxiv.org/abs/2107.09842代码:https://github.com/YaoZhang93/MAML摘要: 肝癌是全世界最常见的癌症
- [深度学习论文笔记]Multi-phase Liver Tumor Segmentation with Spatial Aggregation
Slientsake
深度学习之医学图像分割论文多模态融合计算机视觉深度学习人工智能
Multi-phaseLiverTumorSegmentationwithSpatialAggregationandUncertainRegionInpainting[深度学习论文笔记]基于空间聚集和不确定区域修复的多期肝脏肿瘤分割Jul2021MICCAI2021论文:https://arxiv.org/abs/2108.00911代码:https://github.com/yzhang-zju
- [深度学习论文笔记]医学图像分割U型网络大合集
Slientsake
深度学习之医学图像分割论文深度学习计算机视觉Unet大家族医学图像处理
[深度学习论文笔记]医学图像分割U型网络大合集2015U-Net:ConvolutionalNetworksforBiomedicalImageSegmentation(MICCAI)2016V-Net:FullyConvolutionalNeuralNetworksforVolumetricMedicalImageSegmentation3DU-Net:LearningDenseVolumetr
- [深度学习论文笔记]CaraNet: Context Axial Reverse Attention Network for Segmentation of Small Medical Objects
Slientsake
深度学习之医学图像分割论文深度学习计算机视觉pytorch
CaraNet:ContextAxialReverseAttentionNetworkforSegmentationofSmallMedicalObjectsCaraNet:用于分割小医疗对象的上下文轴向反向注意网络Aug2021论文:https://arxiv.org/abs/2108.07368代码:https://github.com/AngeLouCN/CaraNet摘要:准确可靠地分割医
- [深度学习论文笔记]Pairwise Learning for Medical Image Segmentation
Slientsake
深度学习之医学图像分割论文深度学习人工智能计算机视觉
[深度学习论文笔记]PairwiseLearningforMedicalImageSegmentation医学图像分割的成对学习Published:October2020Publishedin:MedicalImageAnalysis论文:https://www.sciencedirect.com/science/article/abs/pii/S1361841520302401代码:https:
- [深度学习论文笔记]Tumor attention networks: Better feature selection, better tumor segmentation
Slientsake
深度学习之医学图像分割论文计算机视觉深度学习医学图像分割pytorch肿瘤分割
Tumorattentionnetworks:Betterfeatureselection,bettertumorsegmentation肿瘤注意网络:更好的特征选择,更好的肿瘤分割Published:March2021NeuralNetworks论文:https://www.sciencedirect.com/science/article/abs/pii/S0893608021000861代码
- [深度学习论文笔记]Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer
Slientsake
深度学习之医学图像分割论文深度学习医学图像分割肿瘤分割计算机视觉
UCTransNet:RethinkingtheSkipConnectionsinU-NetfromaChannel-wisePerspectivewithTransformerUCTransNet:从transformer的通道角度重新思考U-Net中的跳跃连接Published:AAAI2022论文:https://arxiv.org/abs/2109.04335代码:https://gith
- [深度学习论文笔记DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets
Slientsake
深度学习之医学图像分割论文计算机视觉深度学习DoDNet肿瘤分割
DoDNet:Learningtosegmentmulti-organandtumorsfrommultiplepartiallylabeleddatasetsDoDNet:学习从多个部分标记数据集中分割多器官和肿瘤Jul2021CVPR2021论文:https://arxiv.org/abs/2011.10217代码:https://github.com/jianpengz/DoDNet摘要:
- 深度学习论文笔记(一)Deep Residual Learning for Image Recognition
澪mio
深度学习深度学习论文阅读神经网络
深度学习论文精读(一)DeepResidualLearningforImageRecognition前言ResNet1Summary总结遇到的问题?解决方案?成果?2Introduction神经网络叠的越深,则学习出的效果就一定会越好吗?深度残差学习DeepResidualLearning相关工作RelatedWork3DeepResidualLearning3.1残差学习ResidualLear
- 深度学习论文笔记(知识蒸馏)—— FitNets: Hints for Thin Deep Nets
菜到怀疑人生
深度学习深度学习r语言人工智能
文章目录主要工作知识蒸馏的一些简单介绍文中一些有意思的观念Method最近看了不少文献,一直懒得总结,现在才爬起来写总结…,不少论文的idea还是不错的主要工作让小模型模仿大模型的输出(softtarget),从而让小模型能获得大模型一样的泛化能力,这便是知识蒸馏,是模型压缩的方式之一,本文在Hinton提出knowledgedistillation方法(下文简称KD)的基础上进行扩展,利用tea
- 深度学习论文笔记(知识蒸馏)——Distilling the Knowledge in a Neural Network
菜到怀疑人生
深度学习
文章目录主要工作motivationmethod实验主要工作提出一种知识蒸馏的方法,可以压缩模型,让小模型达到与集成亦或是大型模型相似的性能提出一种新的集成学习方法,可以让模型训练速度更快,并且是并行训练本文只总结第一点motivation大型模型往往不适合线上部署,一方面是计算资源消耗大,另一方面是响应速度慢,因此Hinton便考虑是否可以将大模型的知识迁移到小模型上,这里有两个问题大型模型知识
- Generative Adverarial Networks for Hyperspectral Image Classification(2019)——深度学习论文笔记(十一)
immortal12
DL论文笔记卷积神经网络分类算法
GenerativeAdversarialNetworksforHyperspectralImageClassification(2019)文章目录GenerativeAdversarialNetworksforHyperspectralImageClassification(2019)Abstract1.INTRODUCTION2.BACKGROUND3.PROPOSEDMETHODSA.Fra
- [深度学习论文笔记] Inter-slice Context Residual Learning for 3D Medical Image Segmentation
Slientsake
深度学习之医学图像分割论文深度学习pytorch
[深度学习论文研读]Inter-sliceContextResidualLearningfor3DMedicalImageSegmentation基于层间上下文残差学习的三维医学图像分割论文:https://arxiv.org/abs/2011.14155v1代码:https://github.com/jianpengz/ConResNet发表时间:2020IEEE-TMI一、基本介绍1.1问题动
- [深度学习论文笔记]TransBTSV2: Wider Instead of Deeper Transformer for Medical Image Segmentation
Slientsake
深度学习之医学图像分割论文深度学习transformer人工智能肿瘤分割医学图像处理
TransBTSV2:WiderInsteadofDeeperTransformerforMedicalImageSegmentationTransBTSV2:用于医学图像分割的宽Transformer代替深TransformerPublished:Jan2022论文:https://arxiv.org/abs/2201.12785代码:https://github.com/Wenxuan-111
- [深度学习论文笔记]使用多模态MR成像分割脑肿瘤的HNF-Netv2
Slientsake
深度学习之医学图像分割论文深度学习人工智能医学图像分割肿瘤分割计算机视觉
HNF-Netv2forBrainTumorSegmentationusingmulti-modalMRImaging使用多模态MR成像分割脑肿瘤的HNF-Netv2Published:Jan2022论文:https://arxiv.org/abs/2202.05268代码:暂无摘要: 在之前的工作中,作者利用HNF-Net、高分辨率的特征表示和轻量化的非局部自注意机制,利用多模态MR成像对脑肿
- [深度学习论文笔记]UCTransNet:从transformer的通道角度重新思考U-Net中的跳跃连接
Slientsake
深度学习之医学图像分割论文深度学习计算机视觉人工智能医学图像分割
UCTransNet:RethinkingtheSkipConnectionsinU-NetfromaChannel-wisePerspectivewithTransformerUCTransNet:从transformer的通道角度重新思考U-Net中的跳跃连接Published:AAAI2022论文:https://arxiv.org/abs/2109.04335代码:https://gith
- [深度学习论文笔记]A Tri-attention Fusion Guided Multi-modal Segmentation Network
Slientsake
多模态融合深度学习之医学图像分割论文深度学习计算机视觉人工智能多模态融合
ATri-attentionFusionGuidedMulti-modalSegmentationNetwork一种三注意力融合引导的多模态分割网络Published:2Nov2021PatternRecognition2021论文:https://arxiv.org/abs/2111.01623摘要: 在多模态分割领域,可以考虑不同模态之间的相关性来提高分割结果。考虑到不同磁共振模态之间的相关
- [深度学习论文笔记]UNETR: Transformers for 3D Medical Image Segmentation
Slientsake
深度学习之医学图像分割论文深度学习人工智能医学图像分割多器官分割脑肿瘤分割
UNETR:Transformersfor3DMedicalImageSegmentationUNETR:用于三维医学图像分割的TransformerPublished:Oct2021Publishedin:IEEEWinterConferenceonApplicationsofComputerVision(WACV)2022论文:https://arxiv.org/abs/2103.10504代
- [深度学习论文笔记]TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
Slientsake
深度学习之医学图像分割论文深度学习pytorchpython
[深度学习论文笔记]TransUNet:TransformersMakeStrongEncodersforMedicalImageSegmentationTransUNet:用于医学图像分割的Transformers强大编码器论文:https://arxiv.org/pdf/2102.04306代码:https://github.com/Beckschen/TransUNet发表时间:Feb202
- [深度学习论文笔记(增量学习)——Incremental Classifier and Representation Learning
梦回兵工厂
DeepLearning理论知识
深度学习论文笔记(增量学习)——IncrementalClassifierandRepresentationLearning
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?