- 梯度下降法以及随机梯度下降法
HKkuaidou
人工智能深度学习pythonpytorch
梯度下降法就是在更新weight的时候,向函数值下降的最快方向进行更新,具体的原理我就不再写了,就是一个求偏导的过程,有高数基础的都能够很快的理解过程。我在我的github里面会一直更新自己学习pytorch的过程,地址为:https://github.com/00paning/Pytorch_Learning这里我直接展示一个简易实现的python代码,我们还是先看一下运行的效果图:相关pyth
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 每天五分钟玩转深度学习PyTorch:基于GoogLeNet完成CAFIR10分类
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch分类GoogLeNet人工智能CAFIR10
本文重点前面我们终于使用pytorch搭建了GoogLeNet,本文我们使用该网络模型解决一个实际问题,也就是使用它完成CAFIR10分类,其实就这些任务而言,我们只要搭建好模型,然后把数据喂进去就行了,其它的地方都是一样的,就是网络模型不一样。代码
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- 在windows下运行ollama用5600XT (其实旧的a卡应该都可以)步骤同时用ComfyUI + RX 5600 XT + DirectML 安装与配置
Zalo2
AIdeepseekwindowsllamastablediffusionlinuxAI作画
Linux部分5600XT这个卡是gfx1010的核心,这个是rand1架构,这是被amd放弃的老古董包裹其他的rand1或者rand2都是。没钱也要玩AI(自能简单运用,不能训练,微调等)这张卡只有6g远远不够ai使用所以我发现好像是能和cpu一起混用的。#警告这张卡不要在linux下尝试安装rocm版本进行pytorch编译,然后进行模型微调,反正我是浪费时间了,根本行不通,因为amd根本就没
- PyTorch 和 Python关系
一只积极向上的小咸鱼
pythonpytorch人工智能
1PyTorch和Python关系PyTorch和Python是两个不同但相互关联的工具,主要用于机器学习和深度学习领域。以下是它们之间的关系和各自的作用:Python编程语言:Python是一种高级编程语言,以其简洁易读的语法而闻名。广泛使用:Python在数据科学、人工智能、Web开发、自动化等多个领域有着广泛的应用。库和生态系统丰富:Python拥有丰富的第三方库和工具,如NumPy、pan
- python和pytorch关系_PyTorch:Python优先的深度学习框架
weixin_39877182
最近,Torch7团队开源了PyTorch。据该项目官网介绍,PyTorch是一个Python优先的深度学习框架,能够在强大的GPU加速基础上实现张量和动态神经网络。PyTorch是一个Python软件包,其提供了两种高层面的功能:使用强大的GPU加速的Tensor计算(类似numpy)构建于基于tape的autograd系统的深度神经网络如有需要,你也可以复用你最喜欢的Python软件包(如nu
- 点云空洞的边界识别提取 pso-bp 神经网络的模型来修复点云空洞 附python代码
点云-激光雷达-Slam-三维牙齿
激光雷达点云c++为主神经网络人工智能深度学习点云python
代码是一个Python程序,用于处理3D点云数据,特别是检测和修复点云中的孔洞区域。1.**导入库**:-`numpy`:用于数学运算。-`open3d`:用于处理3D数据和可视化。-`torch`:PyTorch库,用于深度学习。-`torch.nn`和`torch.optim`:PyTorch的神经网络和优化器模块。-`mpl_toolkits.mplot3d`和`matplotlib.pyp
- OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file,
小李飞刀李寻欢
Notebookhuggingfacebert分类大模型
场景:训练bert-base-chinese下游任务:分类。在一个服务器可以用,但GPU只有一个卡,只能换一个服务器,换个服务器又要重装环境,但后者下载模型有问题,手动用git-lfs下载后指定位置报错:Traceback(mostrecentcalllast):/examples/pytorch/text-classification/run_glue.py",line622,inmain()/
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- PyTorch深度学习框架60天进阶学习计划 - 第19天:时间序列预测
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程迁移学习python
PyTorch深度学习框架60天进阶学习计划-第19天:时间序列预测目录时间序列预测概述滑动窗口数据构造方法归一化策略对比:MinMaxvsZ-ScoreLSTM基础原理Attention机制与LSTM结合LSTM-Attention模型实现TeacherForcing技术与应用Prophet基准模型对比多步预测的滚动验证方法综合实战:股票价格预测1.时间序列预测概述时间序列预测是机器学习中的一个
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 五分钟快速掌握windows深度学习环境配置:Anaconda、PyCharm、Pytorch、jupyter notebook
芝帕先生
深度学习windowspycharmpythoncondapip人工智能
目录前言下载并安装Anaconda下载途径安装步骤下载并安装PyCharm安装pytorch安装jupyternotebook前言新手五分钟掌握windows深度学习环境配置:Anaconda、PyCharm、Pytorch配置的时候遇到了很多问题,总结了一下,可以按这个流程无脑配置。通过本流程下载的版本Anaconda2023.03PyCharmCommunity2023.1.3Pytorch2
- python,pycharm,pytorch,向量数据库,环境搭建记录
dept123
pythonpycharmpytorch向量数据库
修改ubuntu上的pycharm镜像源,详细步骤-腾讯云开发者社区-腾讯云【超详细教程】2024最新Pytorch安装教程(同时讲解安装CPU和GPU版本)-CSDN博客https://zhuanlan.zhihu.com/p/667447891Quickstart|MilvusDocumentation
- 【图像去噪】论文复现:TPAMI 2025!全面提升单图像去噪泛化性!像素级零样本去噪方法Pixel2Pixel的Pytorch源码复现,跑通源码,修改各种报错,框架详解,注释详细!
十小大
pytorch人工智能python深度学习计算机视觉图像处理图像去噪
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通Pixel2Pixel全部源码,包含数据集准备、制作像素库(PixelBank)、训练和推理等,
- (4-8)基于DeepSeekMoE架构的DeepSeek-V3:测试模型
码农三叔
训练RAG多模态)架构transformerdeekseek人工智能大模型
4.8测试模型DeepSeek-V3是一款基于PyTorch的深度学习模型,主要用于文本生成任务。在加载模型时,首先需要从指定路径加载模型的配置文件和预训练权重。加载完成后,模型被设置为评估模式,并移动到GPU上以加速推理过程。在生成文本时,用户可以输入提示文本,模型会根据这些提示生成相应的文本输出。生成过程支持交互式输入和批量处理两种模式,用户可以根据需要选择适合的方式进行文本生成。此外,模型的
- 一个基于LSTM的字符级文本生成模型的训练+使用(pytorch)
一只小铁柱
lstmpytorch人工智能
一、代码实现1.配置文件config.pyimporttorch#设备配置DEVICE=torch.device('cuda'iftorch.cuda.is_available()else'cpu')#超参数和配置SEQ_LENGTH=100#输入序列长度BATCH_SIZE=64#批大小EMBEDDING_DIM=256#嵌入层维度HIDDEN_SIZE=512#LSTM隐藏层大小NUM_LAY
- PyTorch安装与环境配置终极指南:从零搭建高效深度学习开发环境(一)
WHCIS
pythonpytorch人工智能深度学习机器学习
一、环境搭建的核心意义与准备工作1.1深度学习环境的核心挑战深度学习开发环境涉及复杂的软件栈依赖关系:硬件兼容性:GPU型号(NVIDIA系列)与CUDA版本的匹配软件依赖链:Python版本→PyTorch版本→CUDA驱动→cuDNN加速库环境隔离需求:不同项目可能依赖冲突的库版本1.2硬件准备清单硬件类型最低要求推荐配置CPU4核8核以上内存8GB32GB+GPU支持CUDANVIDIART
- RNN 实战指南:用 PyTorch 从零实现文本分类
吴师兄大模型
PyTorchpytorchpython人工智能RNN循环神经网络文本分类开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Pytorch实现之利用普通GAN的人脸修复
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉python
简介简介:利用遮挡真实样本的部分面貌,输入给生成器,让生成器输出未被遮挡的面貌,以达到修复人脸的效果。论文题目:FACERESTORATIONVIAGENERATIVEADVERSARIALNETWORKS(基于生成对抗网络的人脸恢复)会议:2023ThirdInternationalConferenceonSecureCyberComputingandCommunication(ICSCCC)摘
- 训练大模型LLM选择哪种开发语言最好
大0马浓
人工智能训练python
训练大型语言模型(LLM)时,选择合适的编程语言主要取决于效率、生态支持、开发便利性以及特定需求(如性能优化或硬件适配)。以下是常见语言的分析和推荐:---1.Python(首选语言)优势:-生态系统丰富:主流深度学习框架(PyTorch、TensorFlow、JAX)均以Python为主要接口,提供完整的工具链(数据处理、模型训练、评估部署)。-开发效率高:语法简洁,适合快速实验和原型开发,社区
- PyTorch分布式训练
阳光明媚大男孩
pytorch分布式人工智能
本文结构:分布式训练概述环境设置数据并行(DDP)模型并行启动训练性能优化建议示例代码参考资料和相关问题以下是为您整理的PyTorch分布式训练教程指南:一、PyTorch分布式训练核心概念数据并行:通过分割数据集实现多GPU并行训练,主流方法包括:DistributedDataParallel(DDP):官方推荐的分布式训练接口DataParallel(DP):单机多卡方案(已逐步被DDP取代)
- 基于yolov11的瓶盖缺陷检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpytorch人工智能
【算法介绍】基于YOLOv11的瓶盖缺陷检测系统在现代制造业中,瓶盖的质量直接影响到产品的封装效果和消费者的使用体验。因此,对瓶盖进行快速、准确的缺陷检测至关重要。基于YOLOv11(YouOnlyLookOnceversion11)的瓶盖缺陷检测系统应运而生,为瓶盖质量监控提供了一种高效、智能的解决方案。该系统采用YOLOv11作为核心检测算法,这一算法融合了先进的深度学习技术和创新的网络架构,
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs