深度学习框架Tensorflow学习(四)----逻辑回归

一、逻辑回归介绍

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛。本文主要从Tensorflow框架下代码应用去分析这个模型。因为比较简单,大家都学习过,就简要介绍一下。

二、求解

回归求解的一般步骤就是:
①寻找假设函数
②构造损失函数
③求解使得损失函数最小化时的回归参数
sigmoid 函数
在介绍逻辑回归模型之前,我们先引入sigmoid函数,其数学形式是:
这里写图片描述
对应的函数曲线如下图所示:
深度学习框架Tensorflow学习(四)----逻辑回归_第1张图片
从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0/1。

三、代码

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

#参数定义
learning_rate = 0.01
training_epoch = 25
batch_size = 100
display_step=1

x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])

#变量定义
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))

#计算预测值
pred = tf.nn.softmax(tf.matmul(x,W)+b)
#计算损失值 使用相对熵计算损失值
cost=tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1))
#定义优化器
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#初始化所有变量值
init = tf.init_all_variables()

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(training_epoch):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        for i in range(total_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            _,c=sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys})
            avg_cost+=c/total_batch
        if (epoch+1)%display_step==0:
        print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
    print "Optimization Finished!"

    # Test model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    # Calculate accuracy for 3000 examples
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print "Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]})

运行代码测试,显示结果,每一步的结果和测试的结果~~~
Epoch: 0001 cost= 1.182138961
Epoch: 0002 cost= 0.664670898
Epoch: 0003 cost= 0.552613988
Epoch: 0004 cost= 0.498497931
Epoch: 0005 cost= 0.465418769
Epoch: 0006 cost= 0.442546219
Epoch: 0007 cost= 0.425473814
Epoch: 0008 cost= 0.412171735
Epoch: 0009 cost= 0.401359516
Epoch: 0010 cost= 0.392401536
Epoch: 0011 cost= 0.384750201
Epoch: 0012 cost= 0.378185581
Epoch: 0013 cost= 0.372401533
Epoch: 0014 cost= 0.367302442
Epoch: 0015 cost= 0.362702316
Epoch: 0016 cost= 0.358568827
Epoch: 0017 cost= 0.354882155
Epoch: 0018 cost= 0.351430912
Epoch: 0019 cost= 0.348316068
Epoch: 0020 cost= 0.345392556
Epoch: 0021 cost= 0.342737278
Epoch: 0022 cost= 0.340264994
Epoch: 0023 cost= 0.337890242
Epoch: 0024 cost= 0.335708558
Epoch: 0025 cost= 0.333686476
Optimization Finished!
Accuracy: 0.889667

你可能感兴趣的:(TesorFlow教)