1.
设m,n为正整数,m为奇数,求证2m-1和2n+1互素
反证法:假设d=(2m-1,2n+1)≥2,则存在x,y∈z,2m=dx+1,和2n=dy-1
则存在u,v∈z,2mn=du+1,2nm=dv-1(注意m为奇数) 于是d(u-v)=2,矛盾,得证
2.
m为正整数,证明若2m+1为素数,则m为2的整数次幂
利用n为奇数时,x+y|x^n+y^n(可以由归纳法证明),设m≥2,含有素因子p
则2^(m/p)+1|2^(m/p)*p +1^p 与题设矛盾
3.
a,b,c为整数,证明[(a,b),(a,c)]=(a,[b,c])
(利用算数基本定理)
引理1:
max{min(x,y),min(x,z)}=min{x,max(y,z)}
证明:
∵min(x,y)<=x, min(x,z)<=x ∴ max{。。。}<=x
类似的可以证明max{。。。}<=max{y,z}
∴ max{。。。}<=min{。。。}
min{x,max(y,z)}<=x ,<=max(y,z)
∴min{x,max(y,z)}<=min(x,y)(y>=z)
min{x,max(y,z)}<=min(x,z)(z>=y)
∴ min{x,max(y,z)}<=max{min(x,y),min(x,z)}
由上,引理得证。
之后利用gcd求解