- Pyramid Stereo Matching Network
Songger
https://s3.eu-central-1.amazonaws.com/avg-kitti/data_scene_flow.zipThisrepositorycontainsthecode(inPyTorch)for"PyramidStereoMatchingNetwork"paper(CVPR2018)byJia-RenChangandYong-ShengChen.Citation@inpr
- 时序动作定位|使用 ‘注意力机制’ 的弱监督时序动作定位顶会论文理解笔记(Weakly-Supervised Temporal Action Localization)
六个核桃Lu
视频动作定位深度学习人工智能神经网络机器学习计算机视觉
目录WeaklySupervisedActionLocalizationbySparseTemporalPoolingNetwork(CVPR2018)W-TALC:Weakly-supervisedTemporalActivityLocalizationandClassification(ECCV2018)
- RetinaNet:Focal Loss for Dense Object Detection(CVPR2018)
怎么全是重名
论文笔记目标检测人工智能计算机视觉
文章目录Abstract北京发现问题并给出方法成果IntroductionRelatedWorkRobust评估FocalLossBalancedCrossEntropyFocalLossDefinitionClassImbalanceandModelInitializationClassImbalanceandTwo-stageDetectorsRetinaNetDetectorExperime
- SE-Net:Squeeze-and-Excitation Networks(CVPR2018)
怎么全是重名
论文笔记深度学习目标检测计算机视觉人工智能
文章目录AbstractIntroduction表征的重要性以前的方向本文提出RelatedWorkDeeperArchitectureAlgorithmicArchitectureSearchAttentionandgatingmechanismsSqueeze-and-ExcitationBlocksSqueeze:GlobalInformationEmbeddingExcitation:Ad
- 常用分类网络结构学习笔记
龙海L
pytorch图像处理python卷积卷积神经网络网络算法
文章目录开源代码地址:https://github.com/shanglianlm0525/PyTorch-NetworksVGGNetResNet残差模块ResNet网络搭建PyTorchIncepetionGoogleNetResNextDenseNETSE-Net注意力层轻量级MobileNet(2017)MobileNetV2(CVPR2018)ShuffleNet(2017)Shuffl
- 人群计数CSRNet的pytorch实现
墨骅
人黑话不多人群计数pytorch深度学习人工智能
本文中对CSRNet:DilatedConvolutionalNeuralNetworksforUnderstandingtheHighlyCongestedScenes(CVPR2018)中的模型进行pytorch实现importtorch;importtorch.nnasnnfromtorchvision.modelsimportvgg16vgg=vgg16(pretrained=1)impo
- 旷视14篇CVPR 2019论文,都有哪些亮点?
城市中迷途小书童
译者|Linstancy责编|Jane出品|AI科技大本营(公众号id:rgznai100)回顾CVPR2018,旷视科技有8篇论文被收录,如高效的移动端卷积神经网络ShuffleNet、语义分割的判别特征网络DFN、优化解决人群密集遮挡问题的RepLose、通过角点定位和区域分割优化场景文本检测的一种新型场景文本检测器、率先提出的可复原扭曲的文档图像等等。今年,旷视科技在CVPR2019上共有1
- 语义分割-博客分享
知识在于分享
深度学习
https://blog.csdn.net/py184473894/article/details/84251258[深度学习从入门到女装]文章索引网络结构:VGGResNetGoogLeNetXceptionDenseNetDeformableCNNResNeXtDPNSENetNon-local(CVPR2018)WideResidualNetworksLearningTransferable
- CVPR2018 目标检测(object detection)算法总览
QQuserCVproject
原文链接https://blog.csdn.net/u014380165/article/details/80784147
- 基于神经网络的图像去水印/图像修复实践
Ali_阿梨
神经网络神经网络python图像处理
采用的一个开源的用于生成图像修复的框架,主要基于ContextualAttention(CVPR2018)和GatedConvolution(ICCV2019Oral)作者源码地址:https://github.com/JiahuiYu/generative_inpainting1.准备安装说明如下:本文只用已经训练好的网络实践该方法的效果,不对该网络进行训练,因此值实践第0和3步。关于预训练好的
- 论文学习笔记(三) SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation
Wilber529
#PointCloud点云分割实例分割深度学习计算机视觉
『写在前面』无意间看到了《深度学习在点云分割中的应用》干货总结,原视频为SGPN原作者的技术分享,便搜来仔细研读一番~SGPN是首个使用原始点云作为输入的实例分割网络,本篇blog为方便自己回忆要点用,建议参照原版paper使用。欢迎各位指正纰漏。论文出处:CVPR2018作者机构:WeiyueWang等,UniversityofSouthernCalifornia原文链接:https://arx
- 谷歌查看html地址_104篇CVPR 2019论文,追踪谷歌、Facebook、英伟达研究课题
weixin_39674190
谷歌查看html地址
【新智元导读】人工智能顶级会议CVPR刚刚公布了最佳论文,谷歌、Facebook和英伟达也随后公布了自家发表的论文共计104篇,本文列出了三家大厂论文的完整列表。本周,在美国加利福尼亚州长滩举办了CVPR2019(计算机视觉和模式识别会议),这是一次重要的年度计算机视觉活动,包括主要会议和几个共同举办的研讨会和教程。本次CVPR参会人数超过6500,CVPR2018超过6000人;CVPR2017
- 因特尔黑科技:黑暗中快速成像系统
77b2491842b4
想在黑暗中看清周围,不可避免地要用到夜视仪。那么如果是想在黑暗中拍照,又没有闪光灯,如何才能排到清晰的照片?在CVPR2018上,英特尔实验室的VladlenKoltun和陈启峰带领的团队提出了一种在黑暗中快速成像的系统,效果非常赞。在暗光下的图像易受到低信噪比和低亮度的影响。短曝光的照片会出现很多早点,而长曝光会让照片变得模糊、不真实。目前已经有很多去噪、去模糊、图像增强的技术,但是在极端条件下
- CVPR2018 TFusion 解决行人重识别问题
zichen7055
论文笔记CVPR2018
原文地址:http://www.cvmart.net/community/article/detail/210此篇为学习笔记(备忘)论文地址:https://arxiv.org/abs/1803.07293代码:https://github.com/ahangchen/TFusionTask行人重识别(PersonRe-identification)是一个图像检索问题,给定一组图片集(probe)
- 【文献翻译】ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM
YuYunTan
计算机视觉论文翻译CVPR2018ICEBAVI-SLAM论文翻译计算机视觉
文章目录前言文献信息【文献翻译】CVPR2018论文:ICE-BA:视觉惯性SLAM的增量,一致和高效的束调整摘要1、引言2、相关工作3、框架3.1约束函数3.2局部和全局优化4、VI-SLAM的高效求解器4.1一般增量BA解决器4.2局部BA的改进4.3IBA的增量PCG5、相对边缘化6、评估6.1算法验证6.2局部准确性6.3解决器精度6.4与GoogleTango进行定性比较7、结论前言
- FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis
Junr_0926
1.前言CVPR2018的文章。在图片合成领域,GAN得到了非常多的应用。和传统的GAN拥有一个generator和一个discriminator,两者相互竞争不同,FaceID-GAN拥有三个player。如下图:Figure1(a)多了一个player是classifier,它和generator竞争,来区分真是图片和合成图片的id。2.介绍从上图中左图可以看出,传统的GAN包含了和两个pla
- 【知识蒸馏】Deep Mutual Learning
pprpp
【GiantPandaCV导语】DeepMutualLearning是KnowledgeDistillation的外延,经过测试(代码来自Knowledge-Distillation-Zoo),DeepMutualLearning性能确实超出了原始KD很多,所以本文分析这篇CVPR2018年被接受的论文。同时PPOCRv2中也提到了DML,并提出了CML,取得效果显著。引言首先感谢:https:/
- 【图像分割】卫星遥感影像道路分割:D-LinkNet算法解读
zstar-_
图像分割算法计算机视觉深度学习
前言因为毕设中的部分内容涉及到卫星遥感影像道路分割,因此去对相关算法做了一些调研。本文所使用数据集为DeepGlobe,来自于CVPR2018年的一个挑战赛:DeepGlobeRoadExtractionChallenge。D-LinkNet为该挑战赛的冠军算法。考虑到D-LinkNet开发版本较老(Python2.7、Pytorch0.2.0),我对此项目进行了重构,具体工作如下:修改相关Pyt
- Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
EdgeAI
原文链接:https://arxiv.org/abs/1712.05877发表:CVPR2018代码:https://github.com/jameszampa/ECE-570-Implementation编辑:Daniel1.推理阶段其中r为要量化的实数,S为浮点数,q为量化后的无符号8位整数,Z为量化后零点,无符号8位整数。weight和activation的量化都是以矩阵为单位,同一矩阵共享
- An Analysis of Scale Invariance in Object Detection – SNIP
_忙中偷闲_
——CVPR2018,BestStudentEntryintheCOCO2017challenge——小目标检测,多尺度检测摘要提出在极端尺度变化下检测识别的不同技术的分析。通过使用不同尺度的数据进行训练来比较检测器的尺度特性和尺度变化设计。通过比较不同网络结构在分类小目标上的性能,得出CNN对图像目标尺度变化并不鲁棒。基于这个理论,本文提出在相同尺度的图像金字塔上训练和测试检测器。由于小对象和大
- 文章学习24“Image Blind Denoising With Generative Adversarial Network Based Noise Modeling”
Carrie_Hou
这篇文章是CVPR2018里做图像去噪的文章之一,主要针对的是图像里的盲去噪,也就是指在不知道噪声水平下的去噪。作者是中山大学和CVTE合作,文章的主要思路和我现在做的很类似,用一个CNN网络来拟合图像中的噪声,网络就是拿DnCNN改的,把最后的subtract去掉。但是由于数据集不够,所以提出来了用GAN来产生噪声以和干净图像结合增加数据量。图像去噪领域内的工作之前也都有介绍,这篇文章就是把Dn
- 理解与学习深度卷积生成对抗网络
auqu64044
python爬虫人工智能
一.GAN引言:生成对抗网络GAN,是当今的一大热门研究方向。在2014年,被Goodfellow大神提出来,当时的G神还是蒙特利尔大学的博士生。据有关媒体统计:CVPR2018的论文里,有三分之一的论文与GAN有关。由此可见,GAN在视觉领域的未来多年内,将是一片沃土。而我们入坑GAN,首先需要理由,GAN能做什么,为什么要学GAN。》》GAN的初衷就是生成不存在于真实世界的数据,类似于使得AI
- YOLOv5、YOLOv8改进:SEAttention 通道注意力机制
陈子迩
YOLO改进YOLO
基于通道的注意力机制源自于CVPR2018:Squeeze-and-ExcitationNetworks官方代码:GitHub-hujie-frank/SENet:Squeeze-and-ExcitationNetworks如图所示,其实就是将不同的通道赋予相关的权重。Attention机制用到这里用朴素的话说就是,把重要的通道赋予大的权重,然后将这些通道以及权重去线性组合。至于这个权重是自己"学
- CosFace: Large Margin Cosine Loss for Deep Face Recognition - 人脸识别
kebijuelun
paper_reading人工智能人脸识别机器学习计算机视觉
PapernameCosFace:LargeMarginCosineLossforDeepFaceRecognitionPaperReadingNoteURL:https://arxiv.org/pdf/1801.09414.pdfTL;DR该篇文章出自CVPR2018,在Angularsoftmaxloss基础上改进得到LargeMarginCosineLoss,同时在SphereFace的基础
- 2021-3-13论文学习——SENet,StairNet,Generalized Focal Loss,R3Det,CARAFE
practical_sharp
深度学习目标检测计算机视觉深度学习
[1]Squeeze-and-ExcitationNetworks论文地址:https://arxiv.org/abs/1709.01507代码地址:https://github.com/moskomule/senet.pytorch/blob/master/senet论文发表于CVPR2018,同时提交于IEEETPAMI2019结构图一个全局avgpooling得到11C的向量,然后通过一个M
- 深度学习(24): 计算两个图像的LPIPS,SSIM指标 (python代码)
biter0088
深度学习python深度学习开发语言
文章目录1.计算LPIPS1.0.说明1.1.代码2.计算SSIM2.0说明2.1代码1.计算LPIPS1.0.说明LPIPS:学习感知图像块相似度(LearnedPerceptualImagePatchSimilarity,LPIPS)也称为“感知损失”(perceptualloss),用于度量两张图像之间的差别。来源于CVPR2018《TheUnreasonableEffectivenesso
- Attention U-Net:Learning Where to Look for the Pancreas
江南马杀鸡
笔记
AttentionU-Net:LearningWheretoLookforthePancreasUnet网络可以称得上是医学图像分割领域的开山之作,AttentionU-Net是在Unet网络结构的基础上增加了attention的机制,可以自动学习并聚焦到不同形状和大小的目标结构。这篇文章是发表在CVPR2018的一篇文章。方法作者提出了一种AttentionGate(AG)结构,Attentio
- 基于对抗式深度学习和往复式深度学习的视觉目标跟踪
Donations
valse2019多目标跟踪深度学习在线
valse2019会议的workshop9《在线视觉跟踪》中上海交通大学的马超老师分享的题目是《基于对抗式深度学习和往复式深度学习的视觉目标跟踪》,本次分享主要是基于《VITAL:VisualTrackingviaAdversarialLearning》和《DeepAttentiveTrackingViaReciprocativeLearning》这两篇分别发表在CVPR2018和NIPS2018
- 论文阅读 | HATS: Histograms of Averaged Time Surfaces for Robust Event-based Object Classification
btee
论文阅读论文阅读人工智能算法
前言:CVPR2018事件表征方法HATS代码:【here】HATS:HistogramsofAveragedTimeSurfacesforRobustEvent-basedObjectClassification引言目前,物体分类任务中用事件的方法比不过基于帧的方法,原因归咎于两点第一,用于事件的表征方法和网络架构有限第二,缺乏大规模的数据集因此本文针对这两点,提出了一种新的表征方法和并提出了一
- cvpr2018 Learning Dual Convolutional Neural Networks for Low-Level Vision
风之羁绊
Abstract在本文中,我们提出了一种用于低级视觉问题的通用双卷积神经网络(DualCNN),例如超分辨率,边缘保留滤波,去除和去雾。这些问题通常涉及估计目标信号的两个组成部分:结构和细节。受此启发,我们提出的DualCNN由两个并行分支组成,它们分别以端到端的方式恢复结构和细节。恢复的结构和细节可以根据每个特定应用的形成模型生成目标信号。DualCNN是一个灵活的低级视觉任务框架,可以很容易地
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D