Hive分析函数

分析函数

1、窗口函数(开窗函数),关键字:over

(0)基础知识

2 preceding ====== 前两行
2 following ====== 后两行
current row ====== 当前行
unbounded preceding ====== 无上限
unbounded following ====== 无下限

(1)表user_par的结构和数据如下图

Hive分析函数_第1张图片

(2)以行定义窗口界限

(2-1)按id排序,并计算当前行和以下两行的年龄之和

select id, name, age, sum(age)over(order by id rows between current row and 2 following) from user_par;

Hive分析函数_第2张图片

(2-2)按id排序,并计算当前行和以上两行的年龄之和

select id, name, age, sum(age)over(order by id rows between current row and 2 following) from user_par;

Hive分析函数_第3张图片

(3)以值定义窗口界限,必须和排序一起使用,否则没有意义

(3-1)按age排序,并计算当前的年龄比它大10岁的所有年龄之和

select id, name, age, sum(age)over(order by age range between current row and 10 following) from user_par;

Hive分析函数_第4张图片

(3-2)不加order by时计算的是所有年龄的总和,值定义窗口界限没有意义

select id, name, age, sum(age)over(range between current row and 10 following) from user_par;

Hive分析函数_第5张图片

2、排名函数

(0)表user_nopar的结构和数据如下图

Hive分析函数_第6张图片

(1)并列跳跃排名:按省份分区,并按年龄大小排序

select id, name, province, age, rank()over(partition by province order by age asc) from user_nopar;

Hive分析函数_第7张图片

(2)并列不跳跃:按省份分区,并按年龄大小排序

select id, name, province, age, dense_rank()over(partition by province order by age asc) from user_nopar;

Hive分析函数_第8张图片

(3)顺序排名:按省份分区,并按年龄大小排序

select id, name, province, age, row_number()over(partition by province order by age asc) from user_nopar;

Hive分析函数_第9张图片

3、最大值函数

select id, name, province, age, first_value(age)over(partition by province order by age desc) from user_nopar;
select id, name, province, age, last_value(age)over(partition by province order by age asc range between unbounded preceding and unbounded following) from user_nopar;

4、最小值函数

select id, name, province, age, first_value(age)over(partition by province order by age asc) from user_nopar;
select id, name, province, age, last_value(age)over(partition by province order by age desc range between unbounded preceding and unbounded following) from user_nopar;

5、三六九等函数

select id, name, age, ntile(3)over(order by age) from user_nopar;

Hive分析函数_第10张图片

6、上提和下沉函数

(1)按province分区,并将age字段向上提一行

select id, name, province, age, lead(age)over(partition by province order by age asc) from user_nopar;

(2)按province分区,并将age字段向上提两行

select id, name, province, age, lead(age,2)over(partition by province order by age asc) from user_nopar;

(3)按province分区,并将age字段向下沉两行

select id, name, province, age, lag(age,2)over(partition by province order by age asc) from user_nopar;

7、指定值占总数的百分比

(1)年龄按降序排列,统计年龄大于等于当前值的人占所有人的百分比

 select id, name, age, cume_dist()over(order by age desc) from user_nopar;

Hive分析函数_第11张图片

(2)按省份分区,并按年龄升序排列,统计每个分区内年龄小于等于当前值的人占所有人的百分比

select id, name, province, age, cume_dist()over(partition by province order by age asc) from user_nopar;

Hive分析函数_第12张图片

 

你可能感兴趣的:(Hive分析函数)