opencv-python 张正友相机标定法实现

最近开始接触TOF相机,一上来就遇到了标定问题。查了opencv-python tutorial,发现给了例程。由于较长时间没碰python,opencv也没学过,很多地方看不懂,这篇博客当作个人对例程的理解。

简述

网上有很多优秀的解释相机标定的博客,我摘了两篇自己参考的。

  • 相机标定
  • 张正友相机标定Opencv实现以及标定流程&&标定结果评价&&图像矫正流程解析(附标定程序和棋盘图)

简单而言,我们拍摄的物体都处于三维世界坐标系中,而相机拍摄时镜头看到的是三维相机坐标系,成像时三维相机坐标系向二维图像坐标系转换。不同的镜头成像时的转换矩阵不同,同时可能引入失真,标定的作用是近似地估算出转换矩阵和失真系数。为了估算,需要知道若干点的三维世界坐标系中的坐标和二维图像坐标系中的坐标,也就是拍摄棋盘的意义。

例程

注:tutorial的例程是片段的,下面是我自己整理起来的程序。

#-*- coding:utf-8 -*-

import cv2
import glob
import numpy as np
'''
cbraw和cbcol是我自己加的。tutorial用的棋盘足够大包含了7×6以上
个角点,我自己用的只有6×4。这里如果角点维数超出的话,标定的时候会报错。
'''
cbraw = 6
cbcol = 4
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((cbraw*cbcol,3), np.float32) 
'''
设定世界坐标下点的坐标值,因为用的是棋盘可以直接按网格取;
假定棋盘正好在x-y平面上,这样z值直接取0,简化初始化步骤。
mgrid把列向量[0:cbraw]复制了cbcol列,把行向量[0:cbcol]复制了cbraw行。
转置reshape后,每行都是4×6网格中的某个点的坐标。
'''
objp[:,:2] = np.mgrid[0:cbraw,0:cbcol].T.reshape(-1,2)

objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
#glob是个文件名管理工具
images = glob.glob("*.jpg")
for fname in images:
#对每张图片,识别出角点,记录世界物体坐标和图像坐标
    img = cv2.imread(fname) #source image
    #我用的图片太大,缩小了一半
    img = cv2.resize(img,None,fx=0.5, fy=0.5, interpolation = cv2.INTER_CUBIC)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #转灰度
    #cv2.imshow('img',gray)
    #cv2.waitKey(1000)
    #寻找角点,存入corners,ret是找到角点的flag
    ret, corners = cv2.findChessboardCorners(gray,(6,4),None)
    #criteria:角点精准化迭代过程的终止条件
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    #执行亚像素级角点检测
    corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)

    objpoints.append(objp)
    imgpoints.append(corners2)
    #在棋盘上绘制角点,只是可视化工具
    img = cv2.drawChessboardCorners(gray,(6,4),corners2,ret)
    cv2.imshow('img',img)
    #cv2.waitKey(1000)
'''
传入所有图片各自角点的三维、二维坐标,相机标定。
每张图片都有自己的旋转和平移矩阵,但是相机内参和畸变系数只有一组。
mtx,相机内参;dist,畸变系数;revcs,旋转矩阵;tvecs,平移矩阵。
'''
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
img = cv2.imread('over.jpg')
#注意这里跟循环开头读取图片一样,如果图片太大要同比例缩放,不然后面优化相机内参肯定是错的。
img = cv2.resize(img,None,fx=0.5, fy=0.5, interpolation = cv2.INTER_CUBIC)
h,w = img.shape[:2]
'''
优化相机内参(camera matrix),这一步可选。
参数1表示保留所有像素点,同时可能引入黑色像素,
设为0表示尽可能裁剪不想要的像素,这是个scale,0-1都可以取。
'''
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
#纠正畸变
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

#这步只是输出纠正畸变以后的图片
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)
#打印我们要求的两个矩阵参数
print "newcameramtx:\n",newcameramtx
print "dist:\n",dist
#计算误差
tot_error = 0
for i in xrange(len(objpoints)):
    imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
    error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
    tot_error += error

print "total error: ", tot_error/len(objpoints)

二维角点是以像素为坐标的,最终输出误差为0.18左右。
下面是原始图片和校准的图片对比:
opencv-python 张正友相机标定法实现_第1张图片

你可能感兴趣的:(视觉)