tensorflow中实现自动、手动梯度下降:GradientDescent、Momentum、Adagrad

tensorflow中提供了自动训练机制(见nsorflow optimizer minimize 自动训练和var_list训练限制),本文主要展现不同的自动梯度下降并附加手动实现。

 

learning rate、step、计算公式如下:

在预测中,x是关于y的变量,但是在train中,w是L的变量,x是不可能变化的。所以,知道为什么weights叫Variable了吧(强行瞎解释一发)

下面用tensorflow手动实现梯度下降:

为了方便写公式,下边的代码改了变量的命名,采用loss、prediction、gradient、weight、y、x等首字母表示,η表示学习率,w0、w1、w2等表示第几次迭代时w的值,不是多个变量。

loss=(y-p)^2=(y-w*x)^2=(y^2-2*y*w*x+w^2*x^2)

dl/dw = 2*w*x^2-2*y*x

代入梯度下降公式w1=w0-η*dL/dw|w=w0

w1 = w0-η*dL/dw|w=w0

w2 = w1 - η*dL/dw|w=w1

w3 = w2 - η*dL/dw|w=w2

 

初始:y=3,x=1,w=2,l=1,dl/dw=-2,η=1

更新:w=4

更新:w=2

更新:w=4

所以,本例x=1,y=3,dl/dw巧合的等于2w-2y,也就是二倍的prediction和label的差距。learning rate=1会导致w围绕正确的值来回徘徊,完全不收敛,这样写主要是方便演示计算。改小learning rate 并增加循环次数就能收敛了。

学习率大的话,大概就是这个效果

tensorflow中实现自动、手动梯度下降:GradientDescent、Momentum、Adagrad_第1张图片

手动实现梯度下降Gradient Descent:

 

#demo4:manual gradient descent in tensorflow
#y label
y = tf.constant(3,dtype = tf.float32)
x = tf.placeholder(dtype = tf.float32)
w = tf.Variable(2,dtype=tf.float32)
#prediction
p = w*x

#define losses
l = tf.square(p - y)
g = tf.gradients(l, w)
learning_rate = tf.constant(1,dtype=tf.float32)
#learning_rate = tf.constant(0.11,dtype=tf.float32)
init = tf.global_variables_initializer()

#update
update = tf.assign(w, w - learning_rate * g[0])

with tf.Session() as sess:
    sess.run(init)
    print(sess.run([g,p,w], {x: 1}))
    for _ in range(5):
        w_,g_,l_ = sess.run([w,g,l],feed_dict={x:1})
        print('variable is w:',w_, ' g is ',g_,'  and the loss is ',l_)

        _ = sess.run(update,feed_dict={x:1})

结果:

learning rate=1

[[-2.0], 2.0, 2.0]
variable is w: 2.0  g is  [-2.0]   and the loss is  1.0
variable is w: 4.0  g is  [2.0]   and the loss is  1.0
variable is w: 2.0  g is  [-2.0]   and the loss is  1.0
variable is w: 4.0  g is  [2.0]   and the loss is  1.0
variable is w: 2.0  g is  [-2.0]   and the loss is  1.0

 

缩小learning rate

variable is w: 2.9964619  g is  [-0.007575512]   and the loss is  1.4347095e-05
variable is w: 2.996695  g is  [-0.0070762634]   and the loss is  1.2518376e-05
variable is w: 2.996913  g is  [-0.0066099167]   and the loss is  1.0922749e-05
variable is w: 2.9971166  g is  [-0.0061740875]   and the loss is  9.529839e-06
variable is w: 2.9973066  g is  [-0.0057668686]   and the loss is  8.314193e-06
variable is w: 2.9974842  g is  [-0.0053868294]   and the loss is  7.2544826e-06
variable is w: 2.9976501  g is  [-0.0050315857]   and the loss is  6.3292136e-06
variable is w: 2.997805  g is  [-0.004699707]   and the loss is  5.5218115e-06
variable is w: 2.9979498  g is  [-0.004389763]   and the loss is  4.8175043e-06
variable is w: 2.998085  g is  [-0.0041003227]   and the loss is  4.2031616e-06
variable is w: 2.9982114  g is  [-0.003829956]   and the loss is  3.6671408e-06
variable is w: 2.9983294  g is  [-0.0035772324]   and the loss is  3.1991478e-06

 

SGD:

注意,tensorflow中没有SGD(Stochastic Gradient Descent)这种梯度下降算法接口,SGD更像是一个喂数据的策略,而不是具体训练方法,按吴恩达教程,严格的说,SGD甚至一次只能训练一个样本,实际常见的更多是多个样本的mini-batch,只要喂数据的时候随机化就算是SGD(mini-batch)了。

 

Momentum梯度下降:

链接:Gradient Descent、Momentum、Nesterov的实现及直觉对比

#demo5.2 tensorflow momentum


y = tf.constant(3,dtype = tf.float32)
x = tf.placeholder(dtype = tf.float32)
w = tf.Variable(2,dtype=tf.float32)
#prediction
p = w*x

#define losses
l = tf.square(p - y)
g = tf.gradients(l, w)
Mu = 0.8
LR = tf.constant(0.01,dtype=tf.float32)

init = tf.group(tf.global_variables_initializer(),tf.local_variables_initializer())

#update w
update = tf.train.MomentumOptimizer(LR, Mu).minimize(l)

with tf.Session() as sess:
    sess.run(init)
    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())
    print(sess.run([g,p,w], {x: 1}))
    for _ in range(10):
        w_,g_,l_ = sess.run([w,g,l],feed_dict={x:1})
        print('variable is w:',w_, ' g is ',g_, '  and the loss is ',l_)

        sess.run([update],feed_dict={x:1})

这是前几次迭代的数据,注意看,和下边的手动实现做对比

variable is w: 2.0  g is  [-2.0]   and the loss is  1.0
variable is w: 2.02  g is  [-1.96]   and the loss is  0.96040004
variable is w: 2.0556  g is  [-1.8888001]   and the loss is  0.8918915
variable is w: 2.102968  g is  [-1.794064]   and the loss is  0.80466646
variable is w: 2.158803  g is  [-1.682394]   and the loss is  0.7076124
variable is w: 2.220295  g is  [-1.5594101]   and the loss is  0.60793996
variable is w: 2.2850826  g is  [-1.4298348]   and the loss is  0.5111069
variable is w: 2.351211  g is  [-1.2975779]   and the loss is  0.42092708
variable is w: 2.4170897  g is  [-1.1658206]   and the loss is  0.3397844
variable is w: 2.4814508  g is  [-1.0370984]   and the loss is  0.26889327

 

下边是手动实现的,这里边有个速度v,是根据每一步的梯度累加的(注意,两步update必须分开执行,不能用tf.group)

#demo5.2:manual momentum in tensorflow

y = tf.constant(3,dtype = tf.float32)
x = tf.placeholder(dtype = tf.float32)
w = tf.Variable(2,dtype=tf.float32)
#prediction
p = w*x

#define losses
l = tf.square(p - y)
g = tf.gradients(l, w)
Mu = 0.8
LR = tf.constant(0.01,dtype=tf.float32)
#v = tf.Variable(0,tf.float32)#error?secend param is not dtype?
v = tf.Variable(0,dtype = tf.float32)
init = tf.global_variables_initializer()

#update w
update1 = tf.assign(v, Mu * v + g[0] * LR )
update2 = tf.assign(w, w - v)
#update = tf.group(update1,update2)#wrong sequence!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

with tf.Session() as sess:
    sess.run(init)
    print(sess.run([g,p,w], {x: 1}))
    for _ in range(10):
        w_,g_,l_,v_ = sess.run([w,g,l,v],feed_dict={x:1})
        print('variable is w:',w_, ' g is ',g_, ' v is ',v_,'  and the loss is ',l_)

        _ = sess.run([update1],feed_dict={x:1})
        _ = sess.run([update2],feed_dict={x:1})

 注意看前边这组数据,和tf自动实现的是一样的。

variable is w: 2.0  g is  [-2.0]  v is  0.0   and the loss is  1.0
variable is w: 2.0  g is  [-2.0]  v is  -0.02   and the loss is  1.0
variable is w: 2.02  g is  [-1.96]  v is  -0.0356   and the loss is  0.96040004
variable is w: 2.0556  g is  [-1.8888001]  v is  -0.047367997   and the loss is  0.8918915
variable is w: 2.102968  g is  [-1.794064]  v is  -0.05583504   and the loss is  0.80466646
variable is w: 2.158803  g is  [-1.682394]  v is  -0.06149197   and the loss is  0.7076124
variable is w: 2.220295  g is  [-1.5594101]  v is  -0.06478768   and the loss is  0.60793996
variable is w: 2.2850826  g is  [-1.4298348]  v is  -0.06612849   and the loss is  0.5111069
variable is w: 2.351211  g is  [-1.2975779]  v is  -0.06587857   and the loss is  0.42092708
variable is w: 2.4170897  g is  [-1.1658206]  v is  -0.06436106   and the loss is  0.3397844
variable is w: 2.9999995  g is  [-9.536743e-07]  v is  -4.7683734e-08   and the loss is  2.2737368e-13
variable is w: 2.9999995  g is  [-9.536743e-07]  v is  -4.7683734e-08   and the loss is  2.2737368e-13
variable is w: 2.9999995  g is  [-9.536743e-07]  v is  -4.7683734e-08   and the loss is  2.2737368e-13
variable is w: 2.9999995  g is  [-9.536743e-07]  v is  -4.7683734e-08   and the loss is  2.2737368e-13
variable is w: 2.9999995  g is  [-9.536743e-07]  v is  -4.7683734e-08   and the loss is  2.2737368e-13

 

接下来是adagrad的例子: 

adagrad有点使用Hessian矩阵的意思,不过用的是近似二次导数,因为真求出二次导数,在深度学习中代价还是很大的。

#demo6:adagrad optimizer in tensorflow

y = tf.constant(3,dtype = tf.float32)
x = tf.placeholder(dtype = tf.float32)
w = tf.Variable(2,dtype=tf.float32)
#prediction
p = w*x

#define losses
l = tf.square(p - y)
g = tf.gradients(l, w)
LR = tf.constant(0.6,dtype=tf.float32)
optimizer = tf.train.AdagradOptimizer(LR)
update = optimizer.minimize(l)
init = tf.global_variables_initializer()


with tf.Session() as sess:
    sess.run(init)
    #print(sess.run([g,p,w], {x: 1}))
    for _ in range(20):
        w_,l_,g_ = sess.run([w,l,g],feed_dict={x:1})
        print('variable is w:',w_, 'g:',g_ ,'  and the loss is ',l_)

        _ = sess.run(update,feed_dict={x:1})

手动实现adagrad的例子(注意,两步update必须分开执行,不能用tf.group)

可以用依赖关系。

#demo6.2:manual adagrad

#with tf.name_scope('initial'):

y = tf.constant(3,dtype = tf.float32)
x = tf.placeholder(dtype=tf.float32)
w = tf.Variable(2,dtype=tf.float32,expected_shape=[1])
second_derivative = tf.Variable(0,dtype=tf.float32)
LR = tf.constant(0.6,dtype=tf.float32)
Regular = 1e-8

#prediction
p = w*x
#loss
l = tf.square(p - y)
#gradients
g = tf.gradients(l, w)
#print(g)
#print(tf.square(g))

#update
update1 = tf.assign_add(second_derivative,tf.square(g[0]))
g_final = LR * g[0] / (tf.sqrt(second_derivative) + Regular)
update2 = tf.assign(w, w - g_final)

#update = tf.assign(w, w - LR * g[0])

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run([g,p,w], {x: 1}))
    for _ in range(20):
        _ = sess.run(update1,feed_dict={x:1.0})
        w_,g_,l_,g_sec_ = sess.run([w,g,l,second_derivative],feed_dict={x:1.0})
        print('variable is w:',w_, ' g is ',g_,' g_sec_ is ',g_sec_,'  and the loss is ',l_)
        #sess.run(g_final)

        _ = sess.run(update2,feed_dict={x:1.0})

结果接近,可惜不完全一样,我也不知道optimizer中的参数都是多少,有没有正则化,太不透明了。

[[-2.0], 2.0, 2.0]
variable is w: 2.0  g is  [-2.0]  g_sec_ is  0.0   and the loss is  1.0
variable is w: 2.6  g is  [-0.8000002]  g_sec_ is  4.0   and the loss is  0.16000007
variable is w: 2.8228343  g is  [-0.3543315]  g_sec_ is  4.6400003   and the loss is  0.0313877
variable is w: 2.920222  g is  [-0.15955591]  g_sec_ is  4.765551   and the loss is  0.006364522
variable is w: 2.9639592  g is  [-0.072081566]  g_sec_ is  4.791009   and the loss is  0.0012989381
variable is w: 2.9837074  g is  [-0.032585144]  g_sec_ is  4.7962046   and the loss is  0.0002654479
variable is w: 2.9926338  g is  [-0.014732361]  g_sec_ is  4.7972665   and the loss is  5.4260614e-05
variable is w: 2.9966695  g is  [-0.0066609383]  g_sec_ is  4.7974834   and the loss is  1.1092025e-05
variable is w: 2.9984941  g is  [-0.0030117035]  g_sec_ is  4.797528   and the loss is  2.2675895e-06
variable is w: 2.999319  g is  [-0.0013618469]  g_sec_ is  4.797537   and the loss is  4.6365676e-07
variable is w: 2.9996922  g is  [-0.0006155968]  g_sec_ is  4.7975388   and the loss is  9.4739846e-08
variable is w: 2.9998608  g is  [-0.0002784729]  g_sec_ is  4.797539   and the loss is  1.9386789e-08
variable is w: 2.999937  g is  [-0.00012588501]  g_sec_ is  4.797539   and the loss is  3.961759e-09
variable is w: 2.9999716  g is  [-5.6743622e-05]  g_sec_ is  4.797539   and the loss is  8.0495965e-10
variable is w: 2.9999871  g is  [-2.5749207e-05]  g_sec_ is  4.797539   and the loss is  1.6575541e-10
variable is w: 2.9999943  g is  [-1.1444092e-05]  g_sec_ is  4.797539   and the loss is  3.274181e-11
variable is w: 2.9999974  g is  [-5.2452087e-06]  g_sec_ is  4.797539   and the loss is  6.8780537e-12
variable is w: 2.9999988  g is  [-2.3841858e-06]  g_sec_ is  4.797539   and the loss is  1.4210855e-12
variable is w: 2.9999995  g is  [-9.536743e-07]  g_sec_ is  4.797539   and the loss is  2.2737368e-13
variable is w: 2.9999998  g is  [-4.7683716e-07]  g_sec_ is  4.797539   and the loss is  5.684342e-14

variable is w: 2.0 g: [-2.0]   and the loss is  1.0
variable is w: 2.5926378 g: [-0.81472445]   and the loss is  0.16594398
variable is w: 2.816606 g: [-0.3667879]   and the loss is  0.033633344
variable is w: 2.9160419 g: [-0.1679163]   and the loss is  0.0070489706
variable is w: 2.9614334 g: [-0.07713318]   and the loss is  0.0014873818
variable is w: 2.9822717 g: [-0.035456657]   and the loss is  0.00031429363
variable is w: 2.9918494 g: [-0.016301155]   and the loss is  6.6431916e-05
variable is w: 2.9962525 g: [-0.0074949265]   and the loss is  1.404348e-05
variable is w: 2.998277 g: [-0.0034461021]   and the loss is  2.968905e-06
variable is w: 2.9992077 g: [-0.0015845299]   and the loss is  6.2768373e-07
variable is w: 2.9996357 g: [-0.0007286072]   and the loss is  1.327171e-07
variable is w: 2.9998324 g: [-0.00033521652]   and the loss is  2.809253e-08
variable is w: 2.999923 g: [-0.0001540184]   and the loss is  5.930417e-09
variable is w: 2.9999645 g: [-7.104874e-05]   and the loss is  1.2619807e-09
variable is w: 2.9999835 g: [-3.2901764e-05]   and the loss is  2.7063152e-10
variable is w: 2.9999924 g: [-1.5258789e-05]   and the loss is  5.820766e-11
variable is w: 2.9999964 g: [-7.1525574e-06]   and the loss is  1.2789769e-11
variable is w: 2.9999983 g: [-3.33786e-06]   and the loss is  2.7853275e-12
variable is w: 2.9999993 g: [-1.4305115e-06]   and the loss is  5.1159077e-13
variable is w: 2.9999998 g: [-4.7683716e-07]   and the loss is  5.684342e-14

这个例子只供演示,真正体现Adagrad优势的,还得是多参数情形,单参数用Adagrad不能显现很大优势,Adagrad的一大优点,是能协调不同参数的学习速率,每个参数都被自己的“二次微分”约束,最后就公平了。

 

 

 

源码

你可能感兴趣的:(机器学习,tensorflow,轻松上手TensorFlow)