- 多模态大模型:技术原理与实战 ChatGPT的诞生
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战ChatGPT的诞生作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习在NLP中的应用1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2预训练语言模型的发展1.3.3GPT系
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 统计机器学习-感知机
又双叒叕苟了一天
感知机是二分类的线性分类模型,即通过一个超平面将数据集分割在两侧,同在一个侧的为同一个分类,一般上侧的为正例,下侧的为负例。感知机的定义假设输入空间(特征空间)是,输出空间是。输入表示实例的特征向量,对应于输入空间(特征空间)的点;输出表示实例的类别。由输入空间到输出空间的如下函数称为感知机。其中,和为感知机模型参数,叫做权值或权值向量,叫做偏置,表示和的内积。是符号函数,即并且假设数据是完全线性
- 二、自然语言处理发展历程
智享AI
深度学习自然语言处理
1.自然语言处理发展历程自然语言处理的发展历程经历了兴起阶段、符号主义、连接主义和深度学习阶段。兴起阶段:自然语言处理的萌芽期,代表人物包括图灵和香农。符号主义:自然语言处理的发展器,代表任务是乔姆斯基和他的生成文法。连接主义:自然语言处理的发展器,代表方法为统计机器学习。深度学习:自然语言处理的鼎盛期,代表人物为深度学习三巨头:YoshuaBengio、YannLeCun、GeoffreyHin
- 机器学习和深度学习检测网络安全课题:DDOS检测、恶意软件、恶意流量检测课题资料
三更科技公社
机器学习深度学习web安全
开源的DDOS检测工具https://github.com/equalitie/learn2ban基于KDDCUP99数据集预测DDoS攻击基于谱分析与统计机器学习的DDoS攻击检测技术研究基于机器学习的分布式拒绝服务攻击检测方法研究DDoSAttacksUsingHiddenMarkovModelsandCooperativeReinforcementLearning*恶意软件检测https:/
- 神经网络:深度学习优化方法
是Dream呀
神经网络深度学习神经网络人工智能
1.有哪些方法能提升CNN模型的泛化能力采集更多数据:数据决定算法的上限。优化数据分布:数据类别均衡。选用合适的目标函数。设计合适的网络结构。数据增强。权值正则化。使用合适的优化器等。2.BN层面试高频问题大汇总BN层解决了什么问题?统计机器学习中的一个经典假设是“源空间(sourcedomain)和目标空间(targetdomain)的数据分布(distribution)是一致的”。如果不一致,
- 【期末复习向】文本理解与数据挖掘-名词解释
诺坎普的风间
数据挖掘人工智能文本理解深度学习名词解释
(一)什么是自然语言处理1.自然语言处理(NLP)从最广泛的意义上说,NLP指的是任何自动处理人类语言的程序(二)一系列自然语言处理问题2.NLP常用方法基于规则的方法(基于人工标注的规则和字典,覆盖度低)统计机器学习方法(被学术界和工业界采用;使用概率模型,包括训练数据、特征工程、在参数上训练模型、将模型应用与测试数据)联结主义方法(深度学习崛起,包括没有语言特征、采用大量原始数据训练、参数量大
- zxl-机器学习-01
米米吉吉
Python机器学习
文章目录机器学习一.定义:二.计算机三阶段三.基本要求四.统计机器学习五.基本问题六.机器学习的方法作者:zstarling机器学习网络算法机器优化概率统计数据矩阵信息模型推理知识靠学习一.定义:机器学习是把数据变成知识的和过程。计算机和数学的结合。统计提供建模的框架framework。数据挖掘和机器学习本质上无区别,机器学习更偏数学。区别:ML机器学习STAT统计学networks,graphs
- 多重共线性
7ccc099f4608
最近碰到个有有意思的问题:在传统统计机器学习(lr)中,相关性检测(VIF等)防止多重共线性非常重要;但是在实际的机器学习应用中,多重共线性似乎不用考虑。参考这个回答:https://stats.stackexchange.com/questions/168622/why-is-multicollinearity-not-checked-in-modern-statistics-machine-l
- 参数估计
Xwei1226
paperreading参数估计
大学期间学习数理统计这门课程的时候,没有特别用心。说实话统计学还是挺枯燥的,而且当时也没有太多的学习意识,不知道为什么要学这些貌似八竿子打不着的东西。现在想想,当时真是toosimple,sometimesnaive啊。。等到越往后面深入,发现需要用的数学知识尤其是统计学知识越来越多,因为现在机器学习里发展最成熟应用最广泛的一部分就是统计机器学习,自然离不开统计学的方方面面。而且随着研究的逐步深入
- 图神经网络--论文精读
无盐薯片
图神经网络神经网络机器学习人工智能
论文精读图神经网络论文精读摘要介绍问题定义学习表示算法代码实战加载百科词条,构建无向图训练Word2Vec模型摘要DeepWalk用于学习隐式表征的表示学习方法,将节点在图中的连接关系进行编码,形成稠密低维连续的向量空间,可用于统计机器学习在多类别网络分类任务上表现不错,例如BlogCatalog、Flickr和YouTubeDeepWalk基于随机游走的,适用于稀疏标注的场景介绍背景:传统机器学
- 贝叶斯变分方法:初学者指南--平均场近似
无水先生
#贝叶斯理论人工智能人工智能数学模型
EricJang:ABeginner'sGuidetoVariationalMethods:Mean-FieldApproximation(evjang.com)一、说明变分贝叶斯(VB)方法是统计机器学习中非常流行的一系列技术。VB方法允许我们将统计推断问题(即,给定另一个随机变量的值来推断随机变量的值)重写为优化问题(即,找到最小化某些目标函数的参数值),本文将阐述这种精妙模型。二、文章绪论2
- 机器学习实战 梯度上升 数学推导_机器学习-白板推导系列(二)-数学基础笔记
weixin_39644377
机器学习实战梯度上升数学推导
视频如下:机器学习-白板推导系列(二)-数学基础_哔哩哔哩(゜-゜)つロ干杯~-bilibiliwww.bilibili.com一、概率-高斯分布1-极大似然估计高斯分布在统计机器学习中占据重要的地位。本节内容主要是利用极大似然估计计算高斯分布下的最优参数。Data:假设数据中有个样本,每个样本为维数据(含有个feature)所有的样本都独立同分布于高斯分布MLE:极大似然估计MLE:求最优的使得
- 2018年8月9日
真昼之月
早上提前于闹钟醒来,希望以后也能一直这样。坐地铁时再度挤成狗,早出门和地铁人不多果然是无法兼得的吗……再次久违(?)地来到公司并打扫工位,学长继续出差中,但是休产假的另一个同事倒是回来了……上午闲着没事看了看李航的统计机器学习,超困,中午睡了半个小时午觉后好了点。下午又看了一会儿书之后开始自己找正事干,写评分卡模型的操作说明写到一半。晚上大部分时间都在KFC摸鱼打鬼岛,面对Rider红鬼掏出了好久
- 浅谈从机器学习到深度学习
江小北
机器学习机器学习
机器学习分为频率派和贝叶斯派。频率派发展成统计机器学习,贝叶斯派发展成概率图模型。频率派有“四化”,如图所示,正则化有很多种,在损失函数后面加一个惩罚项,比如线性回归里面的L1和L2正则化,每个模型的正则化项不一定相同;核化用处非常多,常见的有kernelSVM,另外在降维也有用到,比如kernelPCA。集成方法现在非常多,bagging代表是随机森林,boosting代表有AdaBoost,G
- 概率论入门之《统计机器学习导论》阅读笔记(第一,二章)
生而为弟
第一章统计机器学习第一章主要介绍了机器学习的分类:监督学习,非监督学习,强化学习。然后介绍了监督学习的三大主要任务:回归,分类,排序,以及非监督学习的聚类。最后稍稍介绍了一下机器学习中的其它技术:集成学习,张量学习,在线学习,迁移学习,度量学习。当然这些与概率论关系不大,因此笔者在此略过。下面着重记录第二章的阅读笔记。第二章随机变量与概率分布2.1数学基础imageimageimageimage以
- 监督学习方法与无监督学习方法总结
daisyxyr
李航统计学习方法笔记学习机器学习算法
(一)监督学习10种监督学习方法特点的概括汇总如下表:(二)无监督学习八种常用的统计机器学习方法,即聚类方法(包括层次聚类与k均值聚类)、奇异值分解(SVD)、主成分分析(PCA)、潜在语义分析(LSA)、概率潜在语义分析(PLSA)、马尔可夫链蒙特卡罗法(MCMC)、潜在狄利克雷分配(LDA)、PageRank算法还有另外三种常用的统计机器学习方法,即非负矩阵分解(NMF)、变分推理、幂法这些方
- 【统计机器学习】考核标准 + 课堂练习题汇总
MorleyOlsen
专业选修课系列机器学习人工智能
写在前面1:上课老师是:付学谦老师及其博士助教。上课带纸笔和人就行。2:上课的内容和作业量相比于其他选修课较为轻松,且只有大作业和论文报告,没有考试!!!基本上最后会留20min给同学们写课堂练习题。3:最好拍下每张ppt,指不定哪道题就用上了。以及现在是GPT时代,善用工具会事半功倍。4:平时分而言,我个人觉得挺玄学的,每次课都做前排且上课听讲并回答问题,最后也只拿了B+。5:所以,只是为了刷成
- 《统计机器学习》学习笔记第三章之K近邻
资料加载中
机器学习统计学习方法
本文完全转载于https://www.cnblogs.com/pinard/p/6061661.html标记了一些自己认为比较重要的句子,同时自己为了以后回顾方便就搬了过来。这是一个关于统计机器学习的系列笔记。K近邻法(k-nearestneighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏
- 李航老师《统计学习方法》第1章阅读笔记
Chen_Chance
学习方法笔记人工智能
1.1统计学习统计学习的特点统计学习:计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析现在人们提及机器学习时,往往指统计机器学习,所以可以认为本书介绍的是机器学习方法统计学习的对象统计学习研究的对象是数据(data),统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。e.g.用随机变量描述数据的特征,用概率分布描述数据的统计规律在统计学习中,以变量或变量组表
- 从统计语言模型到预训练语言模型---统计语言模型
hanscalZheng
大语言模型语言模型人工智能自然语言处理
语言模型从历史上来看,自然语言处理的研究范式变化是从规则到统计,从统计机器学习到基于神经网络的深度学习,这同时也是语言模型发展的历史。要了解语言模型的发展历史,首先我们需要认识什么是语言模型。语言模型的目标是建模自然语言的概率分布,即确定语言中任意词序列的概率,它提供了从概率统计角度建模语言文字的独特视角。语言模型在自然语言处理中用广泛的应用,在语音识别、语法纠错、机器翻译、语言生成等任务中均发挥
- 统计机器学习(二)-- 概率(3、4、5、6)
雪茸川
概率1.1概率空间和事件样本空间是实验所有可能结果的空间,,是一个元素或者实现事件是样本空间的子集测度论相关巴拉巴拉随机变量离散随机变量(0-1)分布数学期望二项分布数学期望性质函数n:整数推广NegativeBinomialDistribution几何分布数学期望比如丢硬币得到一次正面所需要的次数泊松分布泊松定理注意:意味着当n很大的时候必定很小可能场景:一本书中一页的印刷错误,一天内病人的人数
- 【AI】机器学习——绪论
AmosTian
AI#机器学习人工智能机器学习AI
文章目录1.1机器学习概念1.1.1定义统计机器学习与数据挖掘区别机器学习前提1.1.2术语1.1.3特点以数据为研究对象目标方法——基于数据构建模型SML三要素SML步骤1.2分类1.2.1参数化/非参数化方法1.2.2按算法分类1.2.3按模型分类概率模型非概率模型逻辑斯蒂回归1.2.4基本分类监督学习分类符号表示形式化特征无监督模型特征符号表示形式化强化学习半监督学习主动学习1.2.5按技巧
- 统计机器学习 -- 目录
雪茸川
概率基础随机变量1随机变量2高斯分布连续分布例子scalemixturepisribarinjeffreypriorstatisticinterenceLaplace变换多元分布定义概率变换jacobianwedgeproduction统计量多元正态分布Wishart分布矩阵元Beta分布统计量充分统计量指数值分布共轭先验性质EntropyKLdistanceproperties概率不等式1概率不
- 1.统计学习及监督学习概论
徴徴南风
1.1统计学习统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习。统计学习的前置知识:工科数学(高等数学),线性代数,概率论,一门基础编程语言(python)统计学习的步骤:有限数据-》假设空间-》学习策略-》实现算法-》选择最优-》预测新数据1.2统计学习的分类基本分类:监督学习,无监督学习,半监督学习,强化学习监督学习:监督学习的本
- 人工智能之数学(概率方面)
aidh123
人工智能之数学概率贝叶斯
我们经常使用的统计机器学习算法,或者是神经网络模型中,数学作为最基础的根基,融合了高等数学中的微分学、概率、线性代数、凸优化等方面,每一个方面深入后都是有很多的益处,但是本着先实用,在进行学习的原则。所以主要是理解相关数学符号,理解统计学习中一些和概率相关的算法推导,即可。基础概率:一件事情发生的概率,等于该事件发生的数目除以所发生的数目。例如电影院观影人数为100人,女生50人,男士50人,你看
- 统计学习方法学习笔记(一)————统计学习方法概论
阿波拉
统计学习方法李航统计学习数据监督学习特征空间
1.统计学习(1)统计学习概念统计学习(statisticallearning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习(statisticalmachinelearning)。(2)统计学习的特点统计学习以计算机及网络为平台,是建立在计算机及网络之上的。统计学习以数据为研究对象,是数据驱动的学科。统计学习的目的是对数据进行预测与分析
- 2022-04-29 《当产品经理遇到人工智能》读书笔记07 自然语言处理的产品应用
May_1013
自然语言处理产品应用在人工智能领域,会将所有人类使用的语言视为“自然”语言。自然语言处理NaturalLanguageProcessing,NLP技术可以让机器更加懂得人类的自然语言,理解人类通过语言所表达的含义。一、认识NLP1、常见自然语言处理的两种方法1)基于规则来理解自然语言,即通过制定一系列的规则来设计一个程序,然后通过这个程序来解决自然语言交流的问题2)基于统计机器学习来理解自然语言,
- 《统计学习方法》学习笔记1:以方法为中心
王同学LM
Machinelearning学习方法学习笔记
统计学习,也称统计机器学习,什么是学习,如果一个系统能够通过执行某个过程改进它的性能,就说这个系统可以学习。按此定义,统计机器学习,就是计算机系统通过运行数据及统计方法提高系统性能的机器学习。它以计算机和网络为平台,以数据为研究对象,目的是对数据进行预测与分析。统计学习以方法为中心,方法构建模型,再应用模型去预测与分析。1.统计学习建立在计算机和网络之上自不必说。2.之所以以数据为研究对象,是因为
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa