- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 基于matlab的深度学习案例及基础知识专栏前言
逼子歌
matlab深度学习信号处理神经网络矩阵运算CNN
专栏简介内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。一、基于matlab的深度学习案例1.1、matlab:基于模板匹配的车牌识别_阐述基于模板匹配的车牌识别的字符识别-CSDN博客1.2、基于卷积神经网络(CNN)的车牌自动识别系统(
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- 1.深度学习基础-模型评估指标
alstonlou
深度学习指南深度学习人工智能机器学习算法python
模型评估指标针对不同类型的任务,需要通过不同的模型评价指标进行评价,在实际应用中,可能需要结合具体任务和需求选择合适的评估方法。有监督学习回归任务回归任务模型的评估主要通过误差和拟合优度来进行,常用的指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)。在回归任务中,我们主要关注模型预测值与实际值之间的差异大小以及模型对数据整体变化的解释能力。以下是具体介绍
- 深度学习基础——卷积神经网络(一)
牛哥带你学代码
Python数据分析python数学建模算法深度学习cnn人工智能
卷积操作与自定义算子开发卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了MindSpore中pyfunc和TBE两种自定义算子实现方法。卷积基本原理1.1卷积的概念卷积操作发展于信号处
- 大语言模型学习路线:从入门到实战
Tim_Van
人工智能语言模型自然语言处理大语言模型大模型
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 深度学习基础 叁:反向传播算法
白拾Official
#深度学习神经网络算法网络深度学习人工智能
注:封面画师:新雨林-触站说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。反向传播这里对反向传播的讲解比较奇怪,可能比较适合初学者理解。想要通过严谨的数学推导理解反向传播的同学,可以搜索一下。反向传播算法反向传播算法什么是正向传播网络什么是反向传播反向传播算法为什么需要反向传播图解反向传播反向传播计算链式求导法则案例1:通过反
- 深度学习基础之《TensorFlow框架(2)—图》
csj50
机器学习深度学习
一、什么是图结构1、图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据图结构:数据(Tensor)+操作(Operation)二、图相关操作1、默认图通常TensorFlow会默认帮我们创建一张图查看默认图的两种方法:(1)通过调用tf.compat.v1.get_default_graph()访问,要将操作添加到默认图形中,直接创建OP即可(2
- 深度学习基础之《TensorFlow框架(4)—Operation》
csj50
机器学习深度学习
一、常见的OP1、举例类型实例标量运算add,sub,mul,div,exp,log,greater,less,equal向量运算concat,slice,splot,canstant,rank,shape,shuffle矩阵运算matmul,matrixinverse,matrixdateminant带状态的运算variable,assgin,assginadd神经网络组件softmax,sig
- 大致聊聊ChatGPT的底层原理,实现方法
黑马程序员官方
chatgpt人工智能机器学习
文目录深度学习基础ChatGPT的本质ChatGPT原理详解一、深度学习基础—深度学习是什么?如何理解神经网络结构?关于生物神经网络结构如下:神经网络介绍人工神经网络(ArtificialNeuralNetwork,简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。当电信号通过树突进入到核细胞时,会逐渐聚集电荷。达到一定的电位后,细胞会被激活,通过轴突发出信号。从
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 深度学习基础--反向传播
掰不开桃子的男人
Modelimage.png前向传播image.png反向传播求误差image.png求对J的影响image.pngimage.png求对J的影响image.pngimage.png误差反传image.pngimage.pngimage.png参考:深度学习—反向传播(BP)理论推导-Backpropagation算法的推导与直观图解-文之-博客园
- 深度学习基础之-3.3线性二分类的神经网络实现
SusanLovesTech
深度学习二分类神经网络线性实现python
线性二分类的神经网络实现提出问题回忆历史,公元前206年,楚汉相争,当时刘邦项羽麾下的城池地理位置如下:0.红色圆点,项羽的城池1.绿色叉子,刘邦的城池其中,在边界处有一些红色和绿色重合的城池,表示双方激烈争夺的拉锯战。样本序号123…119经度相对值0.0254.109…7.767纬度相对值3.4088.012…1.8721=汉,0=楚110…1问题:经纬度相对值为(5,1)时,属于楚还是汉?经
- 深度学习入门资料整理
AI视觉网奇
应该看的算法深度学习基础深度学习入门
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门?-知乎深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
- 新书速览|PyTorch 2.0深度学习从零开始学
全栈开发圈
深度学习pytorch人工智能
实战中文情感分类、拼音汉字转化、中文文本分类、拼音汉字翻译、强化学习、语音唤醒、人脸识别01本书简介本书以通俗易懂的方式介绍PyTorch深度学习基础理论,并以项目实战的形式详细介绍PyTorch框架的使用。为读者揭示PyTorch2.0进行深度学习项目实战的核心技术,实战案例丰富而富有启发。02本书内容本书共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实
- 基于Python的深度学习基础
程序媛了了
python开发语言
Python基础Python是一种开源的、简单易记、可以自由使用编程语言。深度学习将使用NumPy和Matplotlib这两种外部库Python有“解释器”和“脚本文件”两种运行模式Python能够将一系列处理集成为函数或类等模块NumPy中有很多用于操作多维数组的便捷方法类与对象变量是挂在对象身上的标签classMan:#定义了一个新类Man,类Man生成了实例(对象)m#类Man的构造函数(初
- 深度学习知识学习笔记
wyn20001128
图像处理深度学习算法
一相关的深度学习基础知识(1)线性回归 设房屋的⾯积为x1x_1x1,房龄为x2x_2x2,售出价格为yyy。我们需要建⽴基于输⼊x1x_1x1和x2x_2x2来计算输出的表达式,yyy也就是模型(model)。顾名思义,线性回归假设输出与各个输⼊之间是线性关系:y=w1x1+w2x2+by=w_1x_1+w_2x_2+by=w1x1+w2x2+b 在模型训练中,我们需要衡量价格预测值与真实值
- 【深度学习基础】什么是卷积?为什么要用卷积?
BIT可达鸭
▶深度学习-计算机视觉神经网络卷积计算机视觉深度学习python
什么是卷积?为什么要用卷积?(一)卷积的原理:1.卷积核:2.卷积层参数:2.1卷积核数:2.2卷积核的大小:2.3步长:2.4填充:3.池化层:3.1最大池化层(maxpooling):3.2均值池化层(averagepooling):(二)卷积的作用:1.减少参数量:
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- 深度学习简介与应用
jcfszxc
测试专栏深度学习
深度学习简介与应用深度学习是人工智能领域中备受关注的一项技术,通过模拟人脑神经网络的结构,实现了在大规模数据上进行复杂任务的能力。本文将简要介绍深度学习的基本概念,并探讨其在不同领域的应用。深度学习基础深度学习的核心是神经网络,它由多个层次组成,每一层都包含多个神经元。通过训练这些神经网络,系统能够自动学习数据中的模式和特征,从而实现分类、预测等任务。人工神经网络结构输入层:接收数据的第一层,每个
- 深度学习基础知识
湘溶溶
深度学习分割深度学习人工智能
卷积神经网络——图像卷积特征提取卷积核(算子)用来做图像处理时的矩阵,与原图像做运算的参数。卷积层基本参数(卷积核大小,步长【pytorch默认为1】,padding边缘填充)输出尺寸=(输入尺寸-卷积核尺寸+2*padding)/stride+1卷积神经网络的基本结构层输入层:批次通道图像大小卷积层激活函数:加入非线性因素,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题,CNN较为常
- 大模型的学习路线图推荐—多维度深度分析【云驻共创】
一见已难忘
IT分享/测评/交流学习大模型语言模型多维度深度分析
本文背景近年来,随着深度学习技术的迅猛发展,大模型已经成为学术界和工业界的热门话题。大模型具有数亿到数十亿的参数,这使得它们在处理复杂任务时表现得更为出色,但同时也对计算资源和数据量提出了更高的要求。学习大模型的路线图通常需要一系列的基础知识、进阶技能以及实际应用经验。以下是一些相关的背景信息:1.深度学习基础:学习大模型之前,对深度学习的基本概念、神经网络的原理、激活函数、损失函数等基础知识有一
- 深度学习基础之数据操作
丘小羽
pytorch深度学习人工智能
深度学习中最常用的数据是张量,对张量进行操作是进行深度学习的基础。以下是对张量进行的一些操作:首先我们需要先导入相关的张量库torch。元素构造(初始化)使用arange创造一个行向量,也就是0轴(0维)。默认是按顺序创建,从0开始,元素类型默认是整数,当然也可以指定为浮点数。比如:可以使用张量shape属性来访问张量(沿每个轴的长度)的形状(shape)。当然指的是形状,也可能不只是一个维度。我
- Pytorch第2周:深度学习基础 - Day 8-9: 神经网络基础
M.D
深度学习神经网络人工智能pytorchpythontensorflow2
Pytorch第2周:深度学习基础-Day8-9:神经网络基础学习目标:理解神经网络的基础概念。学习如何使用PyTorch的nn模块构建神经网络。学习内容:神经网络基础概念:神经元:构成神经网络的基本单元,模拟生物神经元的功能。层:神经网络的构建块,包括输入层、隐藏层和输出层。激活函数:引入非线性因素,使网络能够学习复杂的模式,如ReLU、Sigmoid、Tanh等。使用PyTorch的nn模块:
- 吴恩达倾情推荐!28张图全解深度学习知识!
深度学习算法与自然语言处理
NLP与大模型机器学习深度学习人工智能自然语言处理机器学习
本文约7500字,建议阅读15分钟本文将从深度学习基础(01-13)、卷积网络(14-22)和循环网络(23-28)三个方面介绍该笔记。吴恩达在推特上展示了一份由TessFerrandez完成的深度学习专项课程图,这套信息图优美地记录了深度学习课程的知识与亮点。因此它不仅仅适合初学者了解深度学习,还适合机器学习从业者和研究者复习基本概念。这不仅仅是一份课程笔记,同时还是一套信息图与备忘录。需要原版
- 【深度学习入门】深度学习基础概念与原理
代码骑士
#深度学习人工智能
*(本篇文章旨在帮助新手了解深度学习的基础概念和原理,不深入讨论算法及核心公式)目录一、深度学习概述1、什么是深度学习?2、深度学习与传统机器学习的区别3、深度学习的应用领域二、深度学习基本原理1、神经网络的基本结构(1)什么是神经网络?(2)神经网络基本结构2、激活函数的作用和选择(1)什么是激活函数?(2)激活函数的作用与选择3、损失函数的定义和选择(1)什么是损失函数(2)损失函数的选择4、
- 深度学习基础数据结构之张量:从一维到多维
m0_61254808
深度学习python深度学习机器学习人工智能
张量在深度学习框架中广泛应用于模型的输入、输出以及中间计算过程。通过支持高维度矩阵运算、记录梯度信息等功能,张量成为实现深度学习算法的关键。张量是一个多维数据容器,可以用来表示各种数据类型,如数值、图像、音频、文本等。本文将介绍一维、二维、三维和四维张量的形象展示、应用以及对学习理解的作用。01一维张量一维张量通常被称为向量,如一维数组[1,4,3,2,5],在数学和线性代数中,向量是指具有大小和
- 深度学习基础知识整理
Do1phln
ML深度学习人工智能
自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因为它不需要标记数据。它的目标是最小化重构误差,即输入数据与解码器输出之间的差异。这可以通过反向传播算法和梯度下降等优化
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发