读者可能还记得本系列博客(二)和(六)中 tf.nn 模块,其中最关心的是 conv2d 这个函数。
首先将博客(二) MNIST 例程中 convolutional.py 关键源码列出:
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,
data_format=None, name=None):
r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors.
Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
and a filter / kernel tensor of shape
`[filter_height, filter_width, in_channels, out_channels]`, this op
performs the following:
1. Flattens the filter to a 2-D matrix with shape
`[filter_height * filter_width * in_channels, output_channels]`.
2. Extracts image patches from the input tensor to form a *virtual*
tensor of shape `[batch, out_height, out_width,
filter_height * filter_width * in_channels]`.
3. For each patch, right-multiplies the filter matrix and the image patch
vector.
In detail, with the default NHWC format,
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]
Must have `strides[0] = strides[3] = 1`. For the most common case of the same
horizontal and vertices strides, `strides = [1, stride, stride, 1]`.
Args:
input: A `Tensor`. Must be one of the following types: `float32`, `float64`.
filter: A `Tensor`. Must have the same type as `input`.
strides: A list of `ints`.
1-D of length 4. The stride of the sliding window for each dimension
of `input`. Must be in the same order as the dimension specified with format.
padding: A `string` from: `"SAME", "VALID"`.
The type of padding algorithm to use.
use_cudnn_on_gpu: An optional `bool`. Defaults to `True`.
data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`.
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
[batch, in_height, in_width, in_channels].
Alternatively, the format could be "NCHW", the data storage order of:
[batch, in_channels, in_height, in_width].
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `input`.
"""
return _op_def_lib.apply_op("Conv2D", input=input, filter=filter,
strides=strides, padding=padding,
use_cudnn_on_gpu=use_cudnn_on_gpu,
data_format=data_format, name=name)
_op_def_lib 是这样构建的:
def _InitOpDefLibrary():
op_list = op_def_pb2.OpList()
text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list)
op_def_registry.register_op_list(op_list)
op_def_lib = op_def_library.OpDefLibrary()
op_def_lib.add_op_list(op_list)
return op_def_lib
_InitOpDefLibrary.op_list_ascii = """%s"""
_op_def_lib = _InitOpDefLibrary()