- 计算机视觉中,Pooling的作用
Wils0nEdwards
计算机视觉人工智能
在计算机视觉中,Pooling(池化)是一种常见的操作,主要用于卷积神经网络(CNN)中。它通过对特征图进行下采样,减少数据的空间维度,同时保留重要的特征信息。Pooling的作用可以归纳为以下几个方面:1.降低计算复杂度与内存需求Pooling操作通过对特征图进行下采样,减少了特征图的空间分辨率(例如,高度和宽度)。这意味着网络需要处理的数据量会减少,从而降低了计算量和内存需求。这对大型神经网络
- 图片中的上采样,下采样和通道融合(up-sample, down-sample, channel confusion)
迪三
#图像处理_PyTorch计算机视觉深度学习人工智能
前言以conv2d为例(即图片),Pytorch中输入的数据格式为tensor,格式为:[N,C,W,H,W]第一维N.代表图片个数,类似一个batch里面有N张图片第二维C.代表通道数,在模型中输入如果为彩色,常用RGB三色图,那么就是3维,即C=3。如果是黑白的,即灰度图,那么只有一个通道,即C=1第三维H.代表图片的高度,H的数量是图片像素的列数第四维W.代表图片的宽度,W的数量是图片像素的
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- 【监控告警】02-Promtheus的学习之路
Kearey.
监控告警微服务网关学习方法
prometheus采用的是拉模式为主,推模式为辅的方式采集数据。Prometheus作为一个指标系统天生就不是精确的——由于指标本身就是稀疏采样的,事实上所有的图表和警报都是”估算”,我们也就不必太纠结于图表和警报的对应性,能够帮助我们发现问题解决问题就是一个好监控系统。当然,有时候我们也得证明这个警报确实没问题,那可以看一眼`ALERTS`指标。`ALERTS`是Prometheus在警报计算
- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- OpenCV高阶操作
富士达幸运星
opencv人工智能计算机视觉
在图像处理与计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、1.图片的上下,采样下采样(Downsampling)下采样通常用于减小图像的尺寸,从而减少图像中的像素数。这个过程可以通过多种方法实现,但最常见的是通过图像金字塔中的pyrDown函数(在OpenCV中)或其他类似的滤波器(如平均池化、最
- Gyro陀螺仪 > MPU 6000 vs ICM 20689
ABEL in China
DIY之旅单片机嵌入式硬件
目录参考MPU6000和ICM20689对比陀螺仪的选择:采样率与噪声参考Gyro-MPU6000vsICM20689|IntoFPVForumFPVDroneFlightControllerExplained-OscarLiangMPU6000和ICM20689对比两个飞行控制器陀螺仪。分别属于T-Motor和iFlight。T-Motor使用MPU6000陀螺仪,而iFlight使用2xICM
- 【机器学习】近似推断的基本概念以及变分贝叶斯的基本概念
Lossya
机器学习人工智能python贝叶斯网络变分贝叶斯近似推断
引言近似推断是处理大规模或复杂概率图模型时常用的一种方法,特别是在精确推断变得不可行或不实际的情况下文章目录引言一、近似推断1.1常见的近似推断方法1.1.1采样方法(SamplingMethods)1.1.1.1马尔可夫链蒙特卡洛(MCMC)1.1.1.2重要性采样(ImportanceSampling)1.1.1.3蒙特卡洛模拟(MonteCarloSimulation)1.1.2变分推断(V
- 计算机视觉之旅-进阶-图像滤波处理
撸码猿
计算机视觉图像处理人工智能
1.基本概念1.1.数字图像图像处理的对象是数字图像,它是由像素点阵列表示的图像。需要了解像素、图像分辨率、灰度级、RBG等图像表示方法。用numpy数组表示,每个元素为像素值。例如RGB图像 importnumpyasnp img=np.array([[[255,0,0],[0,255,0]],[[0,0,255],[255,255,255]]]) 1.2.采样和量化数字图像是通过采样和量化得到
- Unity面试:MipMap是什么,有什么作用?
returnShitBoy
unity游戏引擎
MipMap(多级纹理映射)是计算机图形学中用于提高渲染效率和图像质量的一种技术。在Unity3D等游戏开发中,MipMap的作用主要体现在以下几个方面:减少模糊效果:当纹理在屏幕上缩小时,使用MipMap可以避免出现模糊和失真现象。MipMap的概念是为同一纹理创建多个采样级别,每个级别的分辨率逐渐降低。当物体离摄像机较远时,使用较低分辨率的纹理进行渲染,从而提供更清晰、自然的视觉效果。提高渲染
- 数据分析-18-时间序列分析的季节性检验
皮皮冰燃
数据分析数据分析
1什么是时间序列时间序列是一组按时间顺序排列的数据点的集合,通常以固定的时间间隔进行观测。这些数据点可以是按小时、天、月甚至年进行采样的。时间序列在许多领域中都有广泛应用,例如金融、经济学、气象学和工程等。时间序列的分析可以帮助我们理解和预测未来的趋势和模式,以及了解数据的周期性、趋势、季节性等特征。常用的时间序列分析方法包括平滑法、回归分析、ARIMA模型、指数平滑法和机器学习方法等。1.1时间
- YOLOv9独家原创改进|使用可改变核卷积AKConv改进RepNCSPELAN4
今天炼丹了吗
YOLOv9涨点改进专栏人工智能机器学习python深度学习YOLO目标检测
专栏介绍:YOLOv9改进系列|包含深度学习最新创新,主力高效涨点!!!一、改进点介绍AKConv是一种具有任意数量的参数和任意采样形状的可变卷积核,对不规则特征有更好的提取效果。RepNCSPELAN4是YOLOv9中的特征提取模块,类似YOLOv5和v8中的C2f与C3模块。二、RepNCSPELAN4-AKConv模块详解2.1模块简介RepNCSPELAN4-AKConv的主要思想:使用A
- PyTorch库学习之nn.ConvTranspose2d(模块)
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之nn.ConvTranspose2d(模块)一、简介nn.ConvTranspose2d是PyTorch中的一个模块,用于实现二维转置卷积(也称为反卷积或上采样卷积)。转置卷积通常用于生成比输入更大的输出,例如在生成对抗网络(GANs)和卷积神经网络(CNNs)的解码器部分。二、语法和参数语法torch.nn.ConvTranspose2d(in_channels,out_c
- ClickHouse实战处理(一):MergeTree系列引擎
sheep8521
clickhouse数据库大数据
MergeTree作为家族系列最基础的表引擎,主要有以下特点:存储的数据按照主键排序:创建稀疏索引加快数据查询速度。支持数据分区,可以通过PARTITIONBY语句指定分区字段。支持数据副本。支持数据采样。总之适用于高负载任务的最通用和功能最强大的表引擎。可以快速插入数据并进行后续的后台数据处理。支持数据复制(使用Replicated*的引擎版本)、分区和其他引擎不支持的特性MergeTree系列
- python librosa音频处理库 Core IO and DSP(翻译文档)
FQ_G
音频librosapython
英文文档地址:http://librosa.github.io/librosa/core.html由于本人才疏学浅,如有翻译错误,请指出,谢谢!一、Audioprocessing1.1librosa.core.load加载音频,audioread这种方式能加载的音频格式,我一般都把音频处理成wav格式然后通过该函数加载。参数为:path:音频路径sr:音频频率(你可以不用原始的音频频率,他有重采样
- UE4材质函数参考——枢轴绘制器工具2.0材质函数bate0114
深呼吸10911
枢轴绘制器工具2.0材质函数旨在使枢轴绘制器2MAXScript能够用于虚幻引擎着色器网络的材质函数。枢轴绘制器2的材质函数使您能够利用纹理来访问和解码枢轴绘制器2MAXScript存储的有用模型信息。MAXScript输出的每个纹理都可以在材质中直接引用,但是如果在采样纹理之后没有应用适当的步骤,那么这些值将不正确。本页中给出的这些材质函数可让您轻松快速解码纹理信息。本页中包含的很多材质函数将使
- 『点云处理任务 』用PCL库 还是 深度学习模型?
爱钓鱼的歪猴
点云深度学习人工智能pcl库
深度学习和PCL库都可以用来做点云处理任务,但是二者侧重点有所不同。1、PCL库(点云库)是一个专门用于点云处理和三维几何分析的开源类库,常用于以下任务:1、点云滤波:用于去除噪音、下采样和平滑等操作,入统计滤波、体素滤波和高斯滤波等。2、特征提取和描述:用于捕获地点云数据的表面特征,入法线估计、曲率计算、局部特征描述子(如FPFH、SHOT)等。3、点云配准:,用于将不同视角或不同时间的点云数据
- 探索未来:LLMTime——大型语言模型的零样本时间序列预测器
褚知茉Jade
探索未来:LLMTime——大型语言模型的零样本时间序列预测器在这个数字化的时代,时间和数据是推动世界前进的关键因素。LLMTime是一个创新性的开源项目,它揭示了大型语言模型(LLMs)在时间序列预测中的惊人潜力。无需针对特定任务进行训练,仅通过将数值转化为文本并采样可能的扩展,LLMTime就能超越传统的时间序列方法。项目介绍LLMTime提出了一种名为"零样本时间序列预测"的方法,其核心在于
- ffmpeg读取文件速度的控制
PETER327447
音视频:ffmpeg
两种方法:(1)根据采样率算出每帧播放时间t,然后sleep(t);笨办法(2)根据读取的AVpacket的pts控制速度,核心思想:将ffmpeg的pts转换成系统时间,然后比较当前时间和读取的pts时间,差值即为控制的因素1、获取启动时间,start_time=av_gettime();2、转换avpacket的ptsAVRationaltime_base=m_pFormatContext->
- YOLOv10改进 | Conv篇 | YOLOv10引入24年最新卷积模块LDConv
小李学AI
YOLOv10有效涨点专栏YOLO人工智能深度学习计算机视觉目标检测
1.LDConv介绍1.1摘要:基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有的缺陷。一方面,卷积运算被限制在局部窗口内,因此它不能从其他位置捕获信息,并且它的采样形状是固定的。另一方面,卷积核的大小被固定为k×k,这是一个固定的正方形,并且参数的数量倾向于与大小成正比地增长。尽管可变形卷积(DeformableConv)解决了标准卷积的固定采样问题,但是参数的数
- [Instance Normalization] The Missing Ingredient for Fast Stylization
emergency_rose
paper阅读笔记大数据
BN->IN,能有效提升纹理风格转化任务的图像生成质量1、原因1)生成图像的对比度主要取决于style图像,而非content图像;通过instancenormalization,可以去除content图像的个体对比度差异,从而简化生成过程2)高度非线性的contrastnormalization很难通过CNNblock(包含卷积、池化、上采样、BN等)来实现,因此需要直接在architectur
- python 随机数的用法
_____miss
Python
1、numpy.random.randint()sample_int=numpy.random.randint(start_number,end_number,sample_number)start_number:起始采样数end_number:结尾采样数sample_number:采样的个数例子:sample_int=numpy.random.randint(1,10,5)在[1,10)之间随机
- 什么是奈奎斯特采样定理
达西西66
奈奎斯特采样定理
奈奎斯特采样定理,也被称为奈奎斯特定理或奈氏定理,是信号处理领域中至关重要的原理之一。它揭示了在数字信号处理中如何正确地采样模拟信号,以避免信息丢失和混叠现象。本文将深入探讨奈奎斯特采样定理的原理、应用和实例,以及其在通信、音频处理和图像处理等领域的重要性。奈奎斯特采样定理的基本原理奈奎斯特采样定理是由美国工程师哈里·S·奈奎斯特(HarryNyquist)在20世纪20年代提出的。该定理的核心思
- 高分辨率音频和传统音频区别
Tracy973
网络人工智能音视频实时音视频语音识别
是不是很好奇高分辨率音频和传统音频区别在那里?什么场景更需要高分辨率音频?下面我们一起来理解一下。高分辨率音频和传统音频主要区别在于其音质和数据的详细程度:分辨率:高分辨率音频的采样率和比特深度高于传统音频。例如,高分辨率音频可能使用24位/96kHz或更高的参数,而传统音频(如CD音质)通常为16位/44.1kHz。更高的采样率和比特深度能捕捉到更多的音频细节,提供更清晰、更丰富的声音体验。数据
- 【Lidar】基于Python的点云数据下采样+体素显示
RS迷途小书童
激光雷达点云数据python开发语言激光点云数据点云数据处理
1Open3D库介绍Open3D是一个开源的3D数据处理库,发布于2015年,目前已经更新到0.17.0版本。它基于MIT协议开源许可,使用C++11实现,并经过高度优化,还通过PythonPybinding提供了前端PythonAPI。Open3D为开发者提供了一组精心选择的数据结构和算法,内部实现高度优化并设置为并行化。它处理3D数据的各种应用,包括点云、网格、体积计算、可视化、深度学习、测量
- OpenGL学习之路(4.0) 实现抗锯齿效果
velue
原因当我们放大图片的时候会发现图片上的像素点有很多锯齿形状,这样就会导致图片呈现的效果不佳,所以需要通过抗锯齿处理。方式抗锯齿的方式有两种,一种是混合(GLBlend)处理抗锯齿,一种是多重采样抗锯齿混合(GLBlend)处理抗锯齿需要注意的是,混合处理只能处理点和线段,多边形图形需要多重采样处理打开混合处理/**函数原型:voidglHint(GLenumtarget,GLenummod)参数说
- 智能8路灰度
低调包含不哈哈
开源分享c语言学习stm32
一传感器介绍自制8路灰度传感器,由嘉立创打板,不同于普通的红外循迹模块,这个8路灰度可以用来循迹白底黑线,也可以用来寻蓝底黑线等其他环境。并且灰度传感器,相对于红外传感器干扰小,探测距离高。且不通过电位器进行电压比较,而是通过MCU用ADC采样取得接收管电压,将此电压与之前按键保存的电压相比较(前面为大概介绍,具体使用方法在后面)。二原理介绍8路灰度,每一路由一个发光二极管和一个光敏二极管组成。灰
- pcm原始音频采集率转换
工农村贴膜小哥
音视频编解码技术pcm采样率转换原始音频
pcm介绍pcm也被称为脉码编码调制,是音频中没经过压缩的原始数据。在声音采集中经过抽样,量化,最后编码。采样:对声音进行一定频率的采集,频率越高,间隔时间越小,声音更接近真实。常用的采样率有8khz,16khz,22.05KHz、44.1KHz、48KHz等。量化就是对每个采集的数据用数字信号来表示声音的振幅。如我可以用-10表示波谷,10表示波峰。也就是20个量化值来表示一段音乐。当然也可以用
- 2018-03-18 图片处理(一)----图片加载
紫杉叶子
笔记如下如图:2018-03-18_081925.png实现步骤:从sd卡中显示图片1.因为是android6.0系统,所以要动态申请读写sd卡的权限2.显示图片为了与屏幕大小更加的契合,要动态的获取对图片的一个采样率采样率:比如采样率为4,对于一个1000*1000的图片,宽和高:1000*1000---->高:1/4*宽:1/4=总:1/16----以1/16的大小来采样动态获取采样率//应该
- xmos-XVF3000简介
XMOS-熙光技术
xmosHIFI音频xmosXVF3000
XVF3000特点:用于远场可释放双手来交流的可编程语音芯片4麦的自适应波束成型,支持圆形阵列和线形阵列全双工AEC以支持打断(高达50dB回音消除优化)噪声抑制(高达15dB抑制优化)不具备唤醒词触发检测128pinTQFP封装对外接口部分高速USB2.0设备多通道UAC1.0,支持16kHz/48kHz采样率控制指令传输接口可选I2S接口支持16kHz/48kHz采样率可选I2C控制接口音频输
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$