1、权重可视化
# -*- coding: utf-8 -*-
# file:test_extract_weights.py
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import caffe
deploy_file = "./deploy.prototxt"
model_file = "./caffenet_train_iter_1000.caffemodel"
#编写一个函数,用于显示各层的参数,padsize用于设置图片间隔空隙,padval用于调整亮度
def show_weight(data, padsize=1, padval=0):
#归一化
data -= data.min()
data /= data.max()
#根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n
n = int(np.ceil(np.sqrt(data.shape[0])))
# padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....)
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# 先将padding后的data分成n*n张图像
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
# 再将(n, W, n, H)变换成(n*w, n*H)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.set_cmap('gray')
plt.imshow(data)
plt.imsave("conv2.jpg",data)
plt.axis('off')
if __name__ == '__main__':
#初始化caffe
net = caffe.Net(deploy_file,model_file,caffe.TEST)
print [(k, v[0].data.shape) for k, v in net.params.items()]
#第2个卷积层,参数规模为(50,20,5,5),即50个5*5的1通道filter
weight = net.params["conv2"][0].data
print weight.shape
show_weight(weight.reshape(256*48,5,5)) # [!!!]参数取决于weight.shape
需要准备好3个文件,.caffemodel、delopy.prototxt、test_extract_weights.py,先打印出的参数,这是全部的参数值
[('conv1', (96, 3, 11, 11)), ('conv2', (256, 48, 5, 5)), ('conv3', (384, 256, 3, 3)), ('conv4', (384, 192, 3, 3)), ('conv5', (256, 192, 3, 3)), ('fc6', (4096, 9216)), ('fc7', (4096, 4096)), ('fc8', (1000, 4096))
weight = net.params["conv2"][0].data
print weight.shape
show_weight(weight.reshape(256*48,5,5)) # [!!!]参数取决于weight.shape
可根据上面的值修改reshape(256*48,5,5),否则会出错。可视化哪一个conv 就要修改weight = net.params["conv2"][0].data中的"conv2"。
执行时命令: python test_extract_weights.py
2、曲线可视化
画loss曲线(参考https://blog.csdn.net/u013989576/article/details/71302244)
命令 python plot_training_log.py 6 6.png Coating_defect.log
6 ====可以1-6替换
train_loss.png ====自己命名
如果遇到list index out of range问题,如果是画4-7可以,1-3不行,直接重新复制三个画图需要的文件(extract_seconds.py、parse_log.sh‘plot_training_log.py),建立一个文件夹就行。如果画1-3,可行,4-7不行,查Coating_defect.log.train文件会发现少一行数据,在log日志中加入Iteration 1000, lr = 1e-06,可以补充完数据的一行,根据自己训练的最后一次迭代数据添加。也可能是权限不够的问题,注意查看权限Coating_defect.log.test和Coating_defect.log.train
3、输入图片可视化
# -*- coding: utf-8 -*-
# file:test_extract_data.py
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import caffe
deploy_file = "./deploy.prototxt"
model_file = "./caffenet_train_iter_1000.caffemodel"
test_data = "./2.jpg"
labels_filename = './labels.txt'
#编写一个函数,用于显示各层的参数,padsize用于设置图片间隔空隙,padval用于调整亮度
def show_data(data, padsize=1, padval=0):
#归一化
data -= data.min()
data /= data.max()
#根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n
n = int(np.ceil(np.sqrt(data.shape[0])))
# padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....)
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# 先将padding后的data分成n*n张图像
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
# 再将(n, W, n, H)变换成(n*w, n*H)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.set_cmap('gray')
plt.imshow(data)
plt.imsave("conv1_data.jpg",data)
plt.axis('off')
if __name__ == '__main__':
#如果是用了GPU
#caffe.set_mode_gpu()
#初始化caffe
net = caffe.Net(deploy_file, model_file, caffe.TEST)
#数据输入预处理
# 'data'对应于deploy文件:
# input: "data"
# input_dim: 1
# input_dim: 1
# input_dim: 28
# input_dim: 28
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
# python读取的图片文件格式为H×W×K,需转化为K×H×W
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.load('./mean.npy').mean(1).mean(1))
# python中将图片存储为[0, 1]
# 如果模型输入用的是0~255的原始格式,则需要做以下转换
transformer.set_raw_scale('data', 255)
# caffe中图片是BGR格式,而原始格式是RGB,所以要转化
transformer.set_channel_swap('data', (2, 1, 0))
# 将输入图片格式转化为合适格式(与deploy文件相同)
net.blobs['data'].reshape(1, 3, 227, 227)
#读取图片
#参数color: True(default)是彩色图,False是灰度图
img = caffe.io.load_image(test_data,color=True)
# 数据输入、预处理
net.blobs['data'].data[...] = transformer.preprocess('data', img)
# 前向迭代,即分类
out = net.forward()
# 输出结果为各个可能分类的概率分布
predicts = out['prob'][0]
labels = np.loadtxt(labels_filename, str, delimiter='\t') #读取类别名称文件
print 'predicted class is:',labels[predicts.argmax()-3]
# 上述'prob'来源于deploy文件:
# layer {
# name: "prob
# bottom: "ip2"
# top: "prob"
# }
#最可能分类
predict = predicts.argmax()
print "Result:"
print predict
#---------------------------- 显示特征图 -------------------------------
feature = net.blobs['conv1'].data
#96表示输出个数 55,55特征图大小 注意计算这几个值的大小
show_data(feature.reshape(96,55,55))
注意所需要的基本文件,再添加到当前路径下。
4、结构可视化
虽然caffe自带了可视化框架,但是我认为http://ethereon.github.io/netscope/#/editor比较好用。