密码学主流标准与算法

RSA

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。 为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。
RSA 加密算法的缺点:
1. 产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
2. 安全性,RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。
3. 速度太慢,由于RSA 的分组长度太大,为保证安全性,n 至少也要 600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。

DES 全称为(Data Encryption Standard,即数据加密标准)

是一种使用密钥加密的算法,1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并授权在非密级政府通信中使用,随后该算法在国际上广泛流传开来。需要注意的是,在某些文献中,作为算法的DES称为数据加密算法(Data Encryption Algorithm,DEA),已与作为标准的DES区分开来。

DSA (Digital Signature Algorithm):被美国国家标准局用来做DSS数据签名标准(Digital Signature Standard)

DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们是否是随机产生的,还是作了手脚。RSA算法却做不到。DSA只是一种算法,和RSA不同之处在于它不能用作加密和解密,也不能进行密钥交换,只用于签名,它比RSA要快很多.

ECC:

ECC的敲门砖。
http://www.pediy.com/kssd/pediy06/pediy6014.htm

ECDSA:

ECDSA算法用于数字签名,是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。

ECDH:

ECC算法用途比RSA还猛,不仅可以加解密、签名验证。还可以与DH结合使用,用于密钥磋商,这个密钥交换算法称为ECDH。交换双方可以在不共享任何秘密的情况下协商出一个密钥。ECC是建立在基于椭圆曲线的离散对数问题上的密码体制,给定椭圆曲线上的一个点P,一个整数k,求解点Q=kP很容易;给定两个点P、Q,知道Q=kP,求整数k确是一个难题。

ChaCha20

ChaCha系列密码,作为salsa密码的改良版,具有更强的抵抗密码分析攻击的特性,“20”表示该算法有20轮的加密计算。
由于是流密码,故以字节为单位进行加密,安全性的关键体现在密钥流生成的过程,即所依赖的伪随机数生成器(PRNG)的强度,加密过程即是将密钥流与明文逐字节异或得到密文,反之,解密是将密文再与密钥流做一次异或运算得到明文。

Poly1305

消息认证码(带密钥的Hash函数):密码学中,通信实体双方使用的一种验证机制,保证消息数据完整性的一种工具。构造方法由M.Bellare提出,安全性依赖于Hash函数,故也称带密钥的Hash函数。消息认证码是基于密钥和消息摘要所获得的一个值,可用于数据源发认证和完整性校验。
Poly1305[1] 是Daniel.J.Bernstein创建的消息认证码,可用于检测消息的完整性和验证消息的真实性,现常在网络安全协议(SSL/TLS)中与salsa20或ChaCha20流密码结合使用。

AES 高级加密标准(英语:Advanced Encryption Standard,缩写:AES)

这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。
对称密码体制的发展趋势将以分组密码为重点。分组密码算法通常由密钥扩展算法和加密(解密)算法两部分组成。密钥扩展算法将b字节用户主密钥扩展成r个子密钥。加密算法由一个密码学上的弱函数f与r个子密钥迭代r次组成。混乱和密钥扩散是分组密码算法设计的基本原则。抵御已知明文的差分和线性攻击,可变长密钥和分组是该体制的设计要点。
AES是美国国家标准技术研究所NIST旨在取代DES的21世纪的加密标准。
AES的基本要求是,采用对称分组密码体制,密钥的长度最少支持为128、192、256,分组长度128位,算法应易于各种硬件和软件实现。1998年NIST开始AES第一轮分析、测试和征集,共产生了15个候选算法。1999年3月完成了第二轮AES2的分析、测试。2000年10月2日美国政府正式宣布选中比利时密码学家Joan Daemen 和 Vincent Rijmen 提出的一种密码算法RIJNDAEL 作为 AES.
在应用方面,尽管DES在安全上是脆弱的,但由于快速DES芯片的大量生产,使得DES仍能暂时继续使用,为提高安全强度,通常使用独立密钥的三级DES。但是DES迟早要被AES代替。流密码体制较之分组密码在理论上成熟且安全,但未被列入下一代加密标准。
AES加密数据块分组长度必须为128比特,密钥长度可以是128比特、192比特、256比特中的任意一个(如果数据块及密钥长度不足时,会补齐)。AES加密有很多轮的重复和变换。大致步骤如下:
1、密钥扩展(KeyExpansion),
2、初始轮(Initial Round),
3、重复轮(Rounds),每一轮又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey,
4、最终轮(Final Round),最终轮没有MixColumns。

GCM

GCM是建立于128位比特分组密钥的基础t的。GCM是AES加密算法的运算模式。GCM利用计数器模式提供对保密的数据进行加密,同时利用定义在伽罗华域的泛散hash函数提供认证加密。特别的GCM也能提供对特殊数据进行鉴权加密。如果GCM的输入被限制在不是对数据加密,则GCM输出的数据叫做GMAC。GMAC足简单的鉴权模式。
GCM的两个操作叫做认证加密和认证解密。每一个操作都是高效并行处理的,同时大数据的输出应运在硬件或者软件实现上是可行的。
同时GCM还有一些很多特征:GCM是“实时”的,也就是需要保密的数据长度以及特别的和不需要保密的数据的长度都不用事先知道。相反,数据的长度在数据到达时就可以计算出来。GCM是一种有方向的分组加密,也就是反方向是不允许的。被保护的数据的鉴权能被独立的从解密形式中识别出来。如果一些不需要的加密的数据或者特别的数据是同定的。那么对应的GCM鉴权体系可以被事先计算。

HMAC

基于散列函数的消息认证码。它需要一个加密用散列函数(表示为H,可以是MD5或者SHA-1)和一个密钥K用以计算消息认证码。
计算HMAC需要一个散列函数hash(可以是md5或者sha-1)和一个密钥key。用L表示hash函数输出字符串长(md5是16),用B表示数据块的长度(md5和sha-1的分割数据块长都是64)。密钥key的长度可以小于等于数据块长B,如果大于数据块长度,可以使用hash函数对key进行转换,结果就是一个L长的key。
  然后创建两个B长的不同字符串:
  innerpad = 长度为B的 0×36
  outterpad = 长度为B的 0×5C
  计算输入字符串str的HMAC:
  hash(key ^ outterpad, hash(key ^ innerpad, str))

使用方法:
  1. 客户端发出登录请求。
  2. 服务器返回一个随机值,并在会话中记录这个随机值。
  3. 客户端将该随机值作为密钥,用户密码进行hmac运算,然后提交给服务器。
  4. 服务器读取用户数据库中的用户密码和步骤2中发送的随机值做与客户端一样的hmac运算,然后与用户发送的结果比较,如果结果一致则验证用户合法。
  

你可能感兴趣的:(密码学)