Tensorflow学习记录10--VGG网络

点我下载paper

1 VGG网络总结

感觉就是再alex-net的基础上,研究了下如何加深网络来提高性能的。总体上也是五层卷积加上三层全链接,但是这五层卷积中都会以pooling来分割,且五层卷积尝试叠加多层卷积再一起,并且尝试以更小的核以及提高核的数量来提高网络的性能,比如alex-net的核的大小为11×11×96不等,vgg网络一般都是用3×3的核,但是她核的数量提高了很多,有3×3×256不等,来提高性能。即通过降低filter的大小,增加层数来达到同样的效果。
vgg的模型比alex-net大很多,训练出来的参数大概有500m,且训练时间长,幸好有训练好的参数可以使用,例如VGG-16,VGG-19等,这俩个效果还不错,且在网上可以下载使用。

2 VGG网络模型

总共探讨了一下几种类型,从A到E这几种类型,由上到下都是五层卷积加3层全链接。

3 VGG网络的实现

来源:https://github.com/boyw165/tensorflow-vgg

这里你能训练自己的VGG模型,也能够加载已有的vgg模型来对图像进行分类,其中vgg19的模型的代码如下,写的很漂亮,把所有东西都放在这个类里面。


import numpy as np
import tensorflow as tf

_VGG_MEAN = [103.939, 116.779, 123.68]


class Vgg19:
    """
    A VGG-19 Network implementation using TensorFlow library.
    The network takes an image of size 224x224 with RGB channels and returns
    category scores of size 1000.
    The network configuration:
    - RGB: 224x224x3
    - BGR: 224x224x3
    - conv1: 224x224x64
    - conv2: 112x112x128
    - conv3: 56x56x256
    - conv4: 28x28x512
    - conv5: 14x14x512
    - fc6: 25088(=7x7x512)x4096
    - fc7: 4096x4096
    - fc8: 4096x1000
    """

    WIDTH = 224
    "The fixed width of the input image."
    HEIGHT = 224
    "The fixed height of the input image."
    CHANNELS = 3
    "The fixed channels number of the input image."

    model = {}
    "The model storing the kernels, weights and biases."
    model_save_path = None
    "The model save path, especially for the training process."
    model_save_freq = 0
    """
    The frequency to save the model in the training process. e.g. Save the
    model every 1000 iteration.
    """

    learning_rate = 0.05
    "Learning rate for the gradient descent."

    _inputRGB = None
    _inputBGR = None
    _inputNormalizedBGR = None

    _conv1_1 = None
    _conv1_2 = None
    _pool1 = None

    _conv2_1 = None
    _conv2_2 = None
    _pool2 = None

    _conv3_1 = None
    _conv3_2 = None
    _conv3_3 = None
    _conv3_4 = None
    _pool3 = None

    _conv4_1 = None
    _conv4_2 = None
    _conv4_3 = None
    _conv4_4 = None
    _pool4 = None

    _conv5_1 = None
    _conv5_2 = None
    _conv5_3 = None
    _conv5_4 = None
    _pool5 = None

    _fc6 = None
    _relu6 = None

    _fc7 = None
    _relu7 = None

    _fc8 = None

    _preds = None
    "The predictions tensor, shape of [?, 1000]"

    _loss = None
    _optimizer = None
    _train_labels = None
    "The train labels tensor, a placeholder."

    def __init__(self,
                 model=None,
                 model_save_path=None,
                 model_save_freq=0):
        """
        :param model: The model either for back-propagation or
        :param model_save_path: The model path for training process.
        :param model_save_freq: Save the model (in training process) every N
        iterations.
        forward-propagation.
        """
        self.model = self._init_empty_model() if not model else model
        self.model_save_path = model_save_path
        self.model_save_freq = model_save_freq

        # Define the train labels.
        self._train_labels = tf.placeholder(tf.float32,
                                            [None, 1000])

        # Define the input placeholder with RGB channels.
        # Size: 224x224x3
        self._inputRGB = tf.placeholder(tf.float32,
                                        [None,
                                         Vgg19.WIDTH,
                                         Vgg19.HEIGHT,
                                         Vgg19.CHANNELS])

        # Convert RGB to BGR order
        # Size: 224x224x3
        red, green, blue = tf.split(3, 3, self._inputRGB)
        self._inputBGR = tf.concat(3, [
            blue,
            green,
            red,
        ])

        # normalize the input so that the elements all have nearly equal
        # variances.
        # Size: 224x224x3
        self._inputNormalizedBGR = tf.concat(3, [
            blue - _VGG_MEAN[0],
            green - _VGG_MEAN[1],
            red - _VGG_MEAN[2],
        ])

        # Setup the VGG-Net graph.
        # Size: 224x224x64
        self._conv1_1 = self._conv_layer(self._inputNormalizedBGR, "conv1_1")
        self._conv1_2 = self._conv_layer(self._conv1_1, "conv1_2")
        # Size: 112x112x64
        self._pool1 = self._max_pool(self._conv1_2, 'pool1')

        # Size: 112x112x128
        self._conv2_1 = self._conv_layer(self._pool1, "conv2_1")
        self._conv2_2 = self._conv_layer(self._conv2_1, "conv2_2")
        # Size: 56x56x128
        self._pool2 = self._max_pool(self._conv2_2, 'pool2')

        # Size: 56x56x256
        self._conv3_1 = self._conv_layer(self._pool2, "conv3_1")
        self._conv3_2 = self._conv_layer(self._conv3_1, "conv3_2")
        self._conv3_3 = self._conv_layer(self._conv3_2, "conv3_3")
        self._conv3_4 = self._conv_layer(self._conv3_3, "conv3_4")
        # Size: 28x28x256
        self._pool3 = self._max_pool(self._conv3_4, 'pool3')

        # Size: 28x28x512
        self._conv4_1 = self._conv_layer(self._pool3, "conv4_1")
        self._conv4_2 = self._conv_layer(self._conv4_1, "conv4_2")
        self._conv4_3 = self._conv_layer(self._conv4_2, "conv4_3")
        self._conv4_4 = self._conv_layer(self._conv4_3, "conv4_4")
        # Size: 14x14x512
        self._pool4 = self._max_pool(self._conv4_4, 'pool4')

        # Size: 14x14x512
        self._conv5_1 = self._conv_layer(self._pool4, "conv5_1")
        self._conv5_2 = self._conv_layer(self._conv5_1, "conv5_2")
        self._conv5_3 = self._conv_layer(self._conv5_2, "conv5_3")
        self._conv5_4 = self._conv_layer(self._conv5_3, "conv5_4")
        # Size: 7x7x512
        self._pool5 = self._max_pool(self._conv5_4, 'pool5')

        # Size: 25088(=7x7x512)x4096
        self._fc6 = self._fc_layer(self._pool5, "fc6")
        self._relu6 = tf.nn.relu(self._fc6)

        # Size: 4096x4096
        self._fc7 = self._fc_layer(self._relu6, "fc7")
        self._relu7 = tf.nn.relu(self._fc7)

        # Size: 4096x1000
        self._fc8 = self._fc_layer(self._relu7, "fc8")

        # For predicting.
        self._preds = tf.nn.softmax(self._fc8, name="prediction")

        # For training.
        self._loss = tf.nn.softmax_cross_entropy_with_logits(self._fc8,
                                                             self._train_labels)
        self._optimizer = tf.train \
            .GradientDescentOptimizer(self.learning_rate) \
            .minimize(self._loss)

    @property
    def inputRGB(self):
        """
        The input RGB images tensor of channels in RGB order.
        Shape must be of [?, 224, 224, 3]
        """
        return self._inputRGB

    @property
    def inputBGR(self):
        """
        The input RGB images tensor of channels in BGR order.
        Shape must be of [?, 224, 224, 3]
        """
        return self._inputBGR

    @property
    def preds(self):
        """
        The prediction(s) tensor, shape of [?, 1000].
        """
        return self._preds

    @property
    def train_labels(self):
        """
        The train labels tensor, shape of [?, 1000].
        """
        return self._train_labels

    @property
    def loss(self):
        """
        The loss tensor.
        """
        return self._loss

    @property
    def optimizer(self):
        """
        The optimizer tensor, used for the training.
        """
        return self._optimizer

    def _avg_pool(self, value, name):
        return tf.nn.avg_pool(value, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                              padding='SAME', name=name)

    def _max_pool(self, value, name):
        return tf.nn.max_pool(value, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                              padding='SAME', name=name)

    def _conv_layer(self, value, name):
        with tf.variable_scope(name):
            filt = self._get_conv_filter(name)

            conv = tf.nn.conv2d(value, filt, [1, 1, 1, 1], padding='SAME')

            conv_biases = self._get_bias(name)
            bias = tf.nn.bias_add(conv, conv_biases)

            relu = tf.nn.relu(bias)
            return relu

    def _fc_layer(self, value, name):
        with tf.variable_scope(name):
            shape = value.get_shape().as_list()
            dim = 1
            for d in shape[1:]:
                dim *= d
            x = tf.reshape(value, [-1, dim])

            weights = self._get_fc_weight(name)
            biases = self._get_bias(name)

            # Fully connected layer. Note that the '+' operation automatically
            # broadcasts the biases.
            fc = tf.nn.bias_add(tf.matmul(x, weights), biases)

            return fc

    def _get_conv_filter(self, name):
        return tf.Variable(self.model[name][0], name="filter")

    def _get_bias(self, name):
        return tf.Variable(self.model[name][1], name="biases")

    def _get_fc_weight(self, name):
        return tf.Variable(self.model[name][0], name="weights")

    def _init_empty_model(self):
        self.model = {
            # All the following things follows [0] = weights, [1] = biases.
            # Conv-layer 1.
            "conv1_1": [np.ndarray([3, 3, 3, 64]),
                        np.ndarray([64])],
            "conv1_2": [np.ndarray([3, 3, 64, 64]),
                        np.ndarray([64])],
            # Conv-layer 2.
            "conv2_1": [np.ndarray([3, 3, 64, 128]),
                        np.ndarray([128])],
            "conv2_2": [np.ndarray([3, 3, 128, 128]),
                        np.ndarray([128])],
            # Conv-layer 3.
            "conv3_1": [np.ndarray([3, 3, 128, 256]),
                        np.ndarray([256])],
            "conv3_2": [np.ndarray([3, 3, 256, 256]),
                        np.ndarray([256])],
            "conv3_3": [np.ndarray([3, 3, 256, 256]),
                        np.ndarray([256])],
            "conv3_4": [np.ndarray([3, 3, 256, 256]),
                        np.ndarray([256])],
            # Conv-layer 4.
            "conv4_1": [np.ndarray([3, 3, 256, 512]),
                        np.ndarray([512])],
            "conv4_2": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            "conv4_3": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            "conv4_4": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            # Conv-layer 5.
            "conv5_1": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            "conv5_2": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            "conv5_3": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            "conv5_4": [np.ndarray([3, 3, 512, 512]),
                        np.ndarray([512])],
            # FC layer.
            "fc6": [np.ndarray([25088, 4096]),
                    np.ndarray([4096])],
            "fc7": [np.ndarray([4096, 4096]),
                    np.ndarray([4096])],
            "fc8": [np.ndarray([4096, 1000]),
                    np.ndarray([1000])]}

        return self.model

4 其他

http://www.cnblogs.com/xuanyuyt/p/5743758.html

这篇博客对为什么使用3×3的核解释的比较清楚,以及使用浅层模型训练来的参数对深层模型的前几层进行初始化也有解释。

你可能感兴趣的:(图像处理,Tensorflow,深度学习)