- 机器学习和深度学习有什么区别?
facaixxx2024
AI大模型机器学习深度学习人工智能
深度学习和机器学习有什么区别?深度学习是机器学习一个分支,机器学习包含深度学习。下面阿小云从定义、技术、数据需求、应用领域、模型复杂度和计算资源多维度来对比深度学习和机器学习的区别:二者的定义区别机器学习:是一种数据分析技术,通过算法使计算机能够在无明确编程的情况下进行学习和决策。深度学习:是机器学习的一个子领域,使用神经网络模型,尤其是深层神经网络模型,来处理、解释和分类数据。依赖算法和技术不同
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- 深度学习之图像回归(二)
zhengyawen666
深度学习回归数据挖掘人工智能
前言这篇文章主要是在图像回归(一)的基础上对该项目进行的优化。(一)主要是帮助迅速入门理清一个深度学习项目的逻辑这篇文章则主要注重在此基础上对于数据预处理和模型训练进行优化前者会通过涉及PCA主成分分析特征选择后者通过正则化数据预处理数据预处理的原因思路链未经过处理的原始数据存在一些问题->对数据进行处理(涉及多种方法)->提升模型性能数据可能存在的问题冗余信息:数据中可能存在重复的特征或高度相关
- VGG 改进:加入GAMAttention注意力机制提升对全局信息捕捉能力
听风吹等浪起
AI改进系列深度学习cnn神经网络人工智能
目录1.GAMAttention注意力机制2.VGG加入GAMAttention模块3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.GAMAttention注意力机制GAMAttention(GlobalAttentionMechanism)是一种用于增强深度学习模型对全局信息捕捉能力的注意力机制。它通过引入全局上下文信息,帮助模型更好地理解输入数据
- 【深度学习】矩阵的理解与应用
大数据追光猿
深度学习矩阵算法线性代数机器学习python深度学习
一、矩阵基础知识1.什么是矩阵?矩阵是一个数学概念,通常表示为一个二维数组,它由行和列组成,用于存储数值数据。矩阵是线性代数的基本工具之一,广泛应用于数学、物理学、工程学、计算机科学、机器学习和数据分析等领域。1.1矩阵的表示一个矩阵通常用大写字母来表示,例如AAA,而矩阵中的元素则用小写字母来表示,例如aija_{ij}aij,其中iii表示行索引,jjj表示列索引。本质:矩阵是二维的张量矩阵的
- Python中常见库 PyTorch和Pydantic 讲解
爱丫爱
pythonpytorch开发语言
PyTorch简介PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它提供了丰富的工具和库,用于构建和训练各种深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)、生成对抗网络(GAN)等。核心特性动态计算图:PyTorch采用动态计算图,这意味着在运行时可以动态定义和修改计算图,使得模型的构建和调试更加灵活。这与TensorFl
- 计算机视觉CV学习路线
我喝AD钙
我的学习笔记计算机视觉学习人工智能
计算机视觉CV学习路线1.基础准备(可参考mooc学习)2.计算机视觉基础知识(可参考mooc学习、计算机图形学)3.经典计算机视觉算法(可参考吴恩达机器学习课程、国内外计算机图形学课程)4.深度学习基础(参考吴恩达和TF、Keras官网手册)5.深度学习在计算机视觉中的应用(李飞飞课程、arxiv论文原文和解析博客,实战参考gitee/github)6.现代计算机视觉技术(arxiv论文原文和解
- 【深度学习基础模型】去噪自编码器 (Denoising Autoencoders, DAE)详细理解并附实现代码。
985小水博一枚呀
深度学习学习笔记深度学习人工智能VAEpython学习autoencoder
【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders文章目录【深度学习基础模型】ExtractingandComposingRobustFeatureswithDeno
- 深入探索Mozilla的DeepSpeech:语音识别的新里程碑
温宝沫Morgan
深入探索Mozilla的DeepSpeech:语音识别的新里程碑项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeech项目简介是一个开源的语音识别引擎,基于深度学习技术,致力于提供准确、可扩展且易于集成的解决方案。该项目的目标是打破现有的语音识别壁垒,使开发者能够轻松构建支持语音的应用,推动人机交互进入新的时代。技术分析基于Baidu的DeepSpeec
- 【深度学习】Adam优化器
九筠
机器学习深度学习人工智能
目录1什么是Adam1.1基本概念1.2Adam的数学理解1.2.1计算一阶矩估计(mean)1.2.2计算二阶矩估计(uncenteredvariance)1.2.3矫正一阶矩估计(mean)和二阶矩估计(uncenteredvariance)的偏差1.2.4更新模型参数1.3Adam的简单理解2Adam优化算法怎么用2.1导入所需的库和模块2.2定义模型和损失函数2.3定义优化器2.4在训练循
- 计算机视觉与深度学习实战:以Python为工具,基于帧间差法进行视频目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于帧间差法进行视频目标检测
一、引言随着科技的飞速发展,计算机视觉和深度学习已成为当今科技领域的热门话题。它们不仅在科研领域取得了显著的成果,而且在安防监控、智能交通、医疗影像分析、工业自动化等领域得到了广泛的应用。本文旨在探讨计算机视觉与深度学习的实战应用,特别是以Python为工具,基于帧间差法进行视频目标检测的方法。二、计算机视觉概述计算机视觉是一门研究如何使机器从数字图像或视频中提取、分析和理解有用信息的学科。它涉及
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现关键词:深度学习、入侵检测、网络安全、机器学习、神经网络、特征提取、实时分析文章目录基于深度学习的入侵检测系统设计与实现1.背景介绍1.1网络安全的重要性1.2传统入侵检测系统的局限性1.3深度学习在安全领域的应用前景2.核心概念与联系2.1入侵检测系统(IDS)概述2.2深度学习基础2.3深度学习在入侵检测中的应用3.核心算法原理&具体操作步骤3.1算法原理概
- 【大模型应用开发 动手做AI Agent】大模型就是Agent的大脑
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】大模型就是Agent的大脑关键词:大模型,AIAgent,智能决策,任务导向,知识表示,交互式学习,混合智能1.背景介绍1.1问题由来随着人工智能(AI)技术的发展,尤其是深度学习和自然语言处理(NLP)技术的进步,越来越多的应用场景开始采用AI模型来解决复杂的决策问题。然而,当前的AI模型大多依赖于大模型的预训练知识,这些模型虽然在通用知识获取上取得了显著进
- 2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)
emmm形成中
pythonopencv深度学习
2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)摘要:本文基于OpenCV与深度学习模型,实现一个多功能工业视觉检测系统,包含缺陷检测、尺寸测量、颜色识别、OCR文本识别、目标分类与数据可视化等功能。代码兼容Python3.7+,功能丰富且经过稳定性测试,适合工业场景应用。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipins
- 航电系统智能诊断深度实战:从硬件集成到DO-178C认证全流程解析(附工业级代码)
Coderabo
DeepSeekR1模型企业级应用航电系统智能诊断
航电系统智能故障诊断全栈技术解析——基于深度学习的工业级实现指南一、航电系统故障诊断技术体系1.1典型故障模式与特征classAvionicFault:FAULT_TYPES={101:'总线通信故障',102:'传感器漂移',
- 直播美颜SDK的底层技术解析:图像处理与深度学习的结合
美狐美颜sdk
美颜API直播美颜SDK美颜SDK图像处理深度学习人工智能美颜API视频美颜SDK直播美颜SDK滤镜sdk
直播美颜SDK通过高效的图像处理技术和深度学习算法,使得用户在直播过程中可以获得更为自然、精致的美颜效果。本文将深入解析直播美颜SDK的底层技术,探讨图像处理与深度学习如何在这一领域实现完美结合,提升用户体验并推动行业创新。一、直播美颜SDK的基本概述图像处理是直播美颜SDK的核心技术之一,它主要负责对图像进行预处理、特征提取以及美颜效果的实时合成。在直播美颜SDK中,图像处理技术包含多个关键步骤
- Neat Vision:深度学习NLP注意力机制可视化工具教程
纪亚钧
NeatVision:深度学习NLP注意力机制可视化工具教程neat-visionNeat(NeuralAttention)Vision,isavisualizationtoolfortheattentionmechanismsofdeep-learningmodelsforNaturalLanguageProcessing(NLP)tasks.(framework-agnostic)项目地址:h
- 介绍 TensorFlow 的基本概念和使用场景。
AC使者
githubsqlite开发语言自然语言处理
TensorFlow是一个由Google开发的开源机器学习框架,旨在让开发者能够构建和训练各种深度学习模型。以下是TensorFlow的基本概念和使用场景:张量(Tensor):在TensorFlow中,数据以张量的形式表示,可以理解为多维数组。张量是TensorFlow的基本数据单位,常用于存储训练数据和模型的参数。计算图(ComputationalGraph):TensorFlow使用计算图来
- 撰写文献必用的评价指标之DCA决策曲线
小辉同志
深度学习深度学习论文阅读
系列文章目录第一章撰写文献必用的评价指标之普通表格第二章撰写文献必用的评价指标之DCA决策曲线目录系列文章目录前言一、DCA决策曲线表现形式横轴纵轴曲线曲线解读图例二、单因素多因素分析单因素分析多因素分析三、R语言程序代码代码解释总结前言在智慧医疗中,深度学习模型用于疾病预测等任务,DCA决策曲线能将模型的预测结果与不同阈值下的临床决策相结合,直观展示在不同疾病概率阈值下,采取某种诊断或治疗策略所
- DeepSeek 学习路线图
CarlowZJ
学习deepseek
以下是基于最新搜索结果整理的DeepSeek学习路线图,涵盖从基础到高级的系统学习路径,帮助你全面掌握DeepSeek的使用和应用开发。一、基础知识与预备技能1.数学基础线性代数:掌握矩阵运算和向量空间,这是深度学习的核心。概率统计:理解贝叶斯理论和概率分布,用于模型训练和推理。微积分:了解优化算法中的梯度下降等概念。2.编程基础Python:掌握Python编程,这是深度学习和AI开发的主要语言
- 计算机毕业设计吊炸天Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_80213251
javajavaweb大数据课程设计python
开发技术SparkHadoopPython爬虫Vue.jsSpringBoot机器学习/深度学习人工智能创新点Spark大屏可视化爬虫预测算法功能1、登录注册界面,用户登录注册,修改信息2、管理员用户:(1)查看用户信息;(2)出行高峰期的10个时间段;(3)地铁限流的10个时间段;(4)地铁限流的前10个站点;(6)可视化大屏实时显示人流量信息。3、普通用户:(1)出行高峰期的10(5)可视化大
- 微构科技《VigorData一站式企业大数据平台产品白皮书》
皙姑娘
微构大数据微构科技微构大数据VigorData一站式企业大数据平台产品白皮书
本白皮书阐述了微构科技VigorData一站式企业大数据平台的定位与应用场景、系统架构、产品特性。VigorData满足企业从数据采集、存储、计算、分析挖掘到可视化展示的一站式数据处理需求,并融合前沿AI科技机器深度学习自我进化,直至与企业自身状况深度契合,帮助企业借力大数据优势深化自身业务价值体系。01产品概述1.1.产品目标一站式企业大数据平台VigorData提供了端到端一站式数据处理服务,
- 深入解析 Hydra 库:灵活强大的 Python 配置管理框架
萧鼎
python基础到进阶教程python开发语言
深入解析Hydra库:灵活强大的Python配置管理框架在机器学习、深度学习和复杂软件开发项目中,管理和维护大量的配置参数是一项具有挑战性的任务。传统的argparse、json或yaml方式虽然能管理部分配置,但随着项目规模的增长,手动管理配置文件变得越来越复杂。Hydra作为一个现代化的Python配置管理框架,提供了动态配置、层级合并、运行时修改等强大功能,使得配置管理更加灵活和高效。本文将
- SD模型微调之LoRA
好评笔记
补档深度学习计算机视觉人工智能面试AIGCSDstablediffusion
大家好,这里是Goodnote(好评笔记),关注公主号Goodnote,专栏文章私信限时Free。本文是SD模型微调方法LoRA的详细介绍,包括数据集准备,模型微调过程,推理过程,优缺点等。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习论文概念核心原理优点训练过程预训练模型加载选择微调的层LoRA优化的层Cross-Attention(跨注意力)层Self
- 清影2.0(AI视频生成)技术浅析(四):计算机视觉(CV)
爱研究的小牛
AIGC—视频AIGC——图像AIGC—计算机视觉人工智能音视频AIGC深度学习机器学习
清影2.0是一个基于人工智能的视频生成平台,其核心计算机视觉(CV)技术包括图像处理与增强、动作捕捉与平滑等。这些技术通过深度学习、生成对抗网络(GAN)、光流估计等方法,实现了高质量的视频生成和编辑。1.清影2.0概述清影2.0的核心目标是通过计算机视觉技术生成高质量的视频内容,其主要功能包括:图像处理与增强:提升视频帧的质量和清晰度。动作捕捉与平滑:捕捉视频中的动作并生成平滑的过渡。2.图像处
- 深度学习-123-综述之AI人工智能与DL深度学习简史1956到2024
皮皮冰燃
深度学习人工智能深度学习
文章目录1AI与深度学习的简史1.1人工智能的诞生(1956)1.2早期人工神经网络(1940-1960年代)1.3多层感知器MLP(1960年代)1.4反向传播(1970-1980年代)1.5第二次黑暗时代(1990-2000年代)1.6深度学习的复兴(21世纪末至今)1.6.1CNN卷积神经网络(1980-2010)1.6.2RNN递归神经网络(1986-2017)1.6.3Transform
- 深度学习-124-LangGraph之基础知识(一)基本聊天机器人和工具增强的聊天机器人
皮皮冰燃
深度学习深度学习人工智能LangGraph
文章目录1基本使用1.1聊天模型1.2创建图1.3与ICEL交互2构建一个基本的聊天机器人2.1定义状态2.2添加节点2.3添加边(入口点)2.4添加边(终点)2.5编译图2.6调用2.7整体代码3使用工具增强聊天机器人3.1百度搜索工具3.2绑定工具的聊天模型3.3定义图3.4添加工具节点3.5添加条件边3.6调用4参考附录1基本使用下图包含一个名为“Lucy”的节点,它执行聊天模型,然后返回结
- 大模型量化概述
AI领航者
人工智能ai大模型
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化Quantization)本系列将针对一些常见大模型量化方案(GPTQ、LLM.int8()、Sm
- 深度学习笔记之自然语言处理(NLP)
电棍233
深度学习笔记自然语言处理
深度学习笔记之自然语言处理(NLP)在行将开学之时,我将开始我的深度学习笔记的自然语言处理部分,这部分内容是在前面基础上开展学习的,且目前我的学习更加倾向于通识。自然语言处理部分将包含《动手学深度学习》这本书的第十四章,自然语言处理预训练和第十五章,自然语言处理应用。并且参考原书提供的jupyternotebook资源。自然语言处理,预训练自然语言处理(NaturalLanguageProcess
- 从零开始玩转TensorFlow:小明的机器学习故事 1
山海青风
#机器学习机器学习tensorflow人工智能
1.引言故事简介小明是一个计算机专业的大三学生,近期在学校里接触到了机器学习。他在某次校园活动中发现,活动主办方总是难以准确预测学生的报名人数,导致准备的物料经常不够或浪费。于是,小明萌生了一个想法:能否通过一些历史数据,用机器学习的方式来预测每场活动的参与率?在老师的建议下,他选择了TensorFlow,一个流行且强大的深度学习框架,希望能将这个想法变成现实。2.开始TensorFlow的旅程场
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&