深度解读ShuffleNet网络结构

原文链接: https://blog.csdn.net/u014380165/article/details/75137111

ShuffleNet是Face++的一篇关于降低深度网络计算量的论文,号称是可以在移动设备上运行的深度网络。这篇文章可以和MobileNet、Xception和ResNeXt结合来看,因为有类似的思想。卷积的group操作从AlexNet就已经有了,当时主要是解决模型在双GPU上的训练。ResNeXt借鉴了这种group操作改进了原本的ResNet。MobileNet则是采用了depthwise separable convolution代替传统的卷积操作,在几乎不影响准确率的前提下大大降低计算量,具体可以参考MobileNets-深度学习模型的加速。Xception主要也是采用depthwise separable convolution改进Inception v3的结构。

该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet单元,接下来依次讲解。

channel shuffle的思想可以看下面的Figure 1。这就要先从group操作说起,一般卷积操作中比如输入feature map的数量是N,该卷积层的filter数量是M,那么M个filter中的每一个filter都要和N个feature map的某个区域做卷积,然后相加作为一个卷积的结果。假设你引入group操作,设group为g,那么N个输入feature map就被分成g个group,M个filter就被分成g个group,然后在做卷积操作的时候,第一个group的M/g个filter中的每一个都和第一个group的N/g个输入feature map做卷积得到结果,第二个group同理,直到最后一个group,如Figure1(a)。不同的颜色代表不同的group,图中有三个group。这种操作可以大大减少计算量,因为你每个filter不再是和输入的全部feature map做卷积,而是和一个group的feature map做卷积。但是如果多个group操作叠加在一起,如Figure1(a)的两个卷积层都有group操作,显然就会产生边界效应,什么意思呢?就是某个输出channel仅仅来自输入channel的一小部分。这样肯定是不行的的,学出来的特征会非常局限。于是就有了channel shuffle来解决这个问题,先看Figure1(b),在进行GConv2之前,对其输入feature map做一个分配,也就是每个group分成几个subgroup,然后将不同group的subgroup作为GConv2的一个group的输入,使得GConv2的每一个group都能卷积输入的所有group的feature map,这和Figure1(c)的channel shuffle的思想是一样的。
 

深度解读ShuffleNet网络结构_第1张图片

 pointwise group convolutions,其实就是带group的卷积核为1*1的卷积,也就是说pointwise convolution是卷积核为1*1的卷积。在ResNeXt中主要是对3*3的卷积做group操作,但是在ShuffleNet中,作者是对1*1的卷积做group的操作,因为作者认为1*1的卷积操作的计算量不可忽视。可以看Figure2(b)中的第一个1*1卷积是GConv,表示group convolution。Figure2(a)是ResNet中的bottleneck unit,不过将原来的3*3 Conv改成3*3 DWConv,作者的ShuffleNet主要也是在这基础上做改动。首先用带group的1*1卷积代替原来的1*1卷积,同时跟一个channel shuffle操作,这个前面也介绍过了。然后是3*3 DWConv表示depthwise separable convolution。depthwise separable convolution可以参考MobileNet,下面贴出depthwise separable convolution的示意图。Figure2(c)添加了一个Average pooling和设置了stride=2,另外原来Resnet最后是一个Add操作,也就是元素值相加,而在(c)中是采用concat的操作,也就是按channel合并,类似googleNet的Inception操作。
 

深度解读ShuffleNet网络结构_第2张图片

 ShuffleNet的核心就是用pointwise group convolution,channel shuffle和depthwise separable convolution代替ResNet block的相应层构成了ShuffleNet uint,达到了减少计算量和提高准确率的目的。channel shuffle解决了多个group convolution叠加出现的边界效应,pointwise group convolution和depthwise separable convolution主要减少了计算量。
 

你可能感兴趣的:(tensorflow)