- Open3D 实现CSF布料模拟算法
今夕是何年,
单目+双目Open3d计算机视觉
目录一、算法原理二,详细过程三,环境安装四,代码实现五,结果展示6,在cloudcompare中的实现一、算法原理1、流程概述1)利用点云·滤波算法或者点云处理软件滤除异常点;2)将激光雷达点云倒置;3)设置模拟布料,设置布料网格分辨率GR,确定模拟粒子数。布料的位置设置在点云最高点以上;4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为IHV;5)布
- fpga图像处理实战-中值滤波
梦梦梦梦子~
OV5640+图像处理图像处理fpga开发计算机视觉
中值滤波中值滤波算法是一种常用的非线性数字滤波技术,主要用于信号处理和图像处理领域。其核心思想是使用信号或图像中某个窗口内所有数值的中值来替换该窗口中心的值,从而达到消除噪声、保留边缘细节的目的。原理简介中值滤波的基本原理是将每个像素点的值用其邻域内的中值来代替,这样可以将孤立的噪声点替换为更接近真实值的周围像素值,从而达到平滑图像的目的。FPGA实现`timescale1ns/1ps////Co
- 2-80 基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪
顶呱呱程序
matlab工程应用matlab汽车算法形态学处理冒泡法kalman视频跟踪滤波
基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪。检测汽车中心和最大半径,与背景差分选择较大差异的区域进行形态学处理,用冒泡法对目标面积从大到小排序。程序已调通,可直接运行。2-80kalman视频跟踪滤波-小红书(xiaohongshu.com)
- SAR图像相干斑滤波算法
fpga和matlab
MATLAB板块2:图像-特征提取处理SAR相干斑滤波
目前已有大量的雷达相干斑抑制算法,这些算法可分为成像前的多视平滑预处理和成像后的滤波两大类。而成像后的滤波又包括空域滤波和频域滤波两种。为了减少相干斑噪声,早期的方法是在SAR成像处理中,通过降低处理器带宽形成多视图子图像,然后对多视子图像进行非相干叠加来降低相干斑噪声。这种非相干叠加来降低斑点噪声的方法称为多视处理。多视处理通过牺牲SAR图像的空间分辨率为代价来对相干斑进行抑制,已不能满足空间高
- 基于协同滤波推荐算法的图书管理系统
Sweican
毕业设计mybatisjava开发语言
目录一、项目概述二、技术框架三、功能设计四、数据库设计五、项目截图六、技术文档一、项目概述Hi,大家好,今天分享的项目是《基于协同滤波推荐算法的图书管理系统》,对用户登录注册、图书推荐、图书管理、用户信息进行管理,基于用户的协同滤波算法对用户进行图书推荐、根据图书浏览量对用户进行热门图书推荐等。图书管理一方面实现对图书信息的维护,如新增、查看、编辑图书等。另一方面实现对图书借阅进行管理,如图书借出
- Kalman滤波参数、调整原则
Terry Cao 漕河泾
VSLAM人工智能算法
1.Q、P、R关系P的迭代为P=QTPQ;R为观测的协方差;状态延时高,说明收敛速度慢。估计参数P越大,收敛的越快。测量误差R越小,收敛的越快。调整这两个参数即可,从状态更新上说,测量误差越小,估计参数误差越大,说明我们越相信测量值,自然收敛的快。缺点就是会让系统变化过快,如果测量值更加不准,则精度会下降,系统不够稳定。2.K与Q、R关系k~Q/(R+Q)P0/(Q+R),收敛的快慢程度。总结下自
- 如何利用BibTex生成论文参考文献列表
写完就会了
解决问题Latex参考文献BibTex
如何利用BibTex生成论文参考文献列表Step1:先在GoogleScholar上找到BibTeX条目信息导出来;如下:@article{chowdhary2010aerodynamic,title={AerodynamicparameterestimationfromflightdataapplyingextendedandunscentedKalmanfilter},author={Chow
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- 无人机飞控算法原理基础研究,多旋翼无人机的飞行控制算法理论详解,无人机飞控软件架构设计
创小董
无人机技术无人机算法
多旋翼无人机的飞行控制算法主要涉及到自动控制器、捷联式惯性导航系统、卡尔曼滤波算法和飞行控制PID算法等部分。自动控制器是无人机飞行控制的核心部分,它负责接收来自无人机传感器和其他系统的信息,并根据预设的算法和逻辑,对无人机的姿态、速度、位置等进行控制。控制器通过控制无人机的电机,使无人机能够按照期望的姿态、速度和位置进行飞行。捷联式惯性导航系统则是一种自主式的导航方法,利用载体上的加速度计、陀螺
- C# 滤波算法
遇见不烦
C#算法c#
/// ///移动平均,曲线平滑 /// ///原曲线数组 ///步长 /// publicdouble[]Smoothing(double[]rawData,intstep=3) { double[]smooth=newdouble[rawData.Length]; fixed(double*o=smooth,r=rawData)
- GNSS定位技术总结与PPP定位技术
Code_ADing
算法人工智能学习GNSS笔记全球卫星导航系统RTK
1.统一观测值方程2.PPP方程构建站间单差方程如下:同样的,设计矩阵也更加庞大:站间单差消除了卫星轨道、卫星钟、电离层、对流层以及卫星端的伪距和载波硬件延迟的影响。但在PPP中,我们无法通过站间单差消除这些影响,所以需要挨个考虑:3.PPP中的Kalman滤波4.PPP技术概述精密单点定位技术(precisepointpositioning,PPP),可以使用单台接收机在全球任何位置获得高精度的
- 2024.1.30 GNSS 学习笔记
Code_ADing
GNSS日常学习零散知识点学习笔记GNSS算法全球导航定位系统
站星双差Kalman滤波伪距差分定位流程1.RTK定位技术(实时载波相位差分技术)原理-站间单差浮点解1.RTK技术其实就是在RTD技术的基础上增加载波观测值的使用。由于伪距的噪声在分米量级,即使我们通过站间单差消除了绝大部分的误差影响,但受限于伪距的精度,我们也只能达到分米量级的定位水平。但载波不同,载波的精度在毫米量级,所以如果其他误差完全消除的话,理论上定位精度可达到的毫米水平。毫米水平的定
- GNSS模块的惯导技术:引领定位科技的前沿
MinewSemi创新微
科技
全球导航卫星系统(GNSS)模块的惯导技术是一项颇具前瞻性的科技,它结合了全球定位系统和惯性导航技术,为各个领域的定位需求提供了更为精准和可靠的解决方案。本文将深入探讨GNSS模块的惯导技术,以及它如何在多个领域中发挥关键作用。1.高精度导航:惯导技术通过使用加速度计和陀螺仪等传感器,不仅可以提供高精度的位置信息,还能在GNSS信号受阻或不可用的环境中维持导航的连续性。这对于需要高精度导航的领域,
- Matlab数字图像处理——图像复原与滤波算法应用方法
MatpyMaster
matlab算法计算机视觉
图像处理领域一直以来都是计算机科学和工程学的一个重要方向,图像复原则是其中一个重要的研究方向之一。图像复原旨在通过运用各种滤波算法,对图像进行去噪、恢复和改善,以提高图像的质量和可视化效果。在本文中,我们将介绍如下内容:1.采用二维中值滤波对图像进行复原中值滤波是一种常用的去噪方法,通过取像素周围邻域的中值来替代当前像素值。采用二维中值滤波对图像进行复原,这有助于去除图像中的椒盐噪声和其他噪声,提
- PCL点云滤波器总结
Roar冷颜
PCL入门教程PCL
PCL点云滤波器总结1PCL中实现的滤波算法及相关概念1.1PCL中的点云滤波方案1.2双边滤波算法1.3PCL中的filters模块及类2点云滤波入门级实例解析2.1使用直通滤波器对点云进行滤波处理2.2使用VoxelGrid滤波器对点云进行下采样2.3使用StatisticalOutlierRemoval滤波器移除离群点2.4使用参数化模型投影点云2.5从一个点云中提取一个子集2.6使用Con
- 【目标跟踪】多相机环视跟踪
读书猿
目标跟踪人工智能自动驾驶
文章目录一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果四、c++代码五、总结一、前言多相机目标跟踪主要是为了实现360度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域,要想靠相机实现无人驾驶,相机必须360度无死角全覆盖。博主提供一种非深度学习方法,采用kalman滤波+匈牙利匹配方式实现环视跟踪。有兴趣可以参考往期【
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- 10种简单的数字滤波算法(C语言源程序)
hugo33
滤波算法滤波算法
1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差#defineA10charvalue;charfilter(){charnew_valu
- 滤波器滤波法&滤波算法(总结)
深耕智能驾驶
信号处理&数理统计系列算法滤波算法滤波器
文章目录一、滤波器滤波法1.低通、高通、带通、带阻滤波器的区别1.1.低通滤波器1.1.1.低通滤波器的参数1.1.2.一阶RC低通滤波1.1.3.一阶RC低通滤波(代码)1.2.高通滤波器1.2.1.一阶RC高通滤波1.2.2.一阶RC高通滤波(代码)1.3.带通滤波器1.4.带阻滤波器2.其他常见滤波器2.1.如何通俗易懂地理解FIR/IIR滤波器?2.2.巴特沃斯模拟滤波器
- 【现代控制系统】能控性与能观性
你哥同学
现代控制系统线性代数矩阵能控性能观性
能控性与能观性2023年11月25日#controlsys文章目录能控性与能观性1.能控性1.1能控性(可控性)的引入1.2LTI系统的可控性1.3LTV系统的可控性2.能观性2.1能观性(可观性)引入2.2LTI系统的可观性2.3LTV系统的可观性3.状态向量的非奇异线性变换3.1LTI能控性分解3.2LTI能观性分解3.3Kalman分解定理5.其他5.1对偶定理5.2能控性能观性和传递函数的
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-3+4
LiongLoure
运动学与动力学学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-3+43.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/PosterrorierrorCovarianceMartix误差协方差矩阵3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-5+6
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-5+65.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)5.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch051.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/
- OpenCV——均值滤波
点云侠
OpenCV图像/点云处理opencvc++python计算机视觉
目录一、均值滤波二、C++代码三、python代码四、结果展示1、原始图像2、3x3卷积3、9x9卷积一、均值滤波 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即包括目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的
- OpenCV——双边滤波
点云侠
OpenCV图像/点云处理opencv计算机视觉人工智能python开发语言算法
目录一、双边滤波二、C++代码三、python代码四、结果展示OpenCV——双边滤波由CSDN点云侠原创。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。一、双边滤波 双边滤波是一种综合考虑滤波器内图像空域信息和滤波器内图像像素灰度值相似性的滤波算法,可以实现在保留区域信息的基础上实现对噪声的去除、对局部边缘的平滑。双边滤波对高频率的波动信号起到平滑的作用,同时保留大幅
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-1+2
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-1+21.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器1.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMa
- 136基于matlab的自适应滤波算法的通信系统中微弱信号检测程序
顶呱呱程序
matlab工程应用算法matlabpython信号处理自适应滤波算法LMS
基于matlab的自适应滤波算法的通信系统中微弱信号检测程序,周期信号加入随机噪声,进行滤波,输出滤波信号,程序已调通,可直接运行。136matlab自适应滤波算法LMS(xiaohongshu.com)
- 运动模型非线性测量非线性扩展卡尔曼跟踪融合滤波算法(Matlab仿真)
奔袭的算法工程师
感知后处理算法matlab人工智能自动驾驶目标跟踪
卡尔曼滤波的原理和理论在CSDN已有很多文章,这里不再赘述,仅分享个人的理解和Matlab仿真代码。之前的博文运动模型非线性扩展卡尔曼跟踪融合滤波算法(Matlab仿真)-CSDN博客使用扩展卡尔曼滤波算法将非线性的运动模型线性化,但测量值仍旧是线性的,不需要雅可比矩阵。这里考虑测量值也为非线性的情况,并用Matlab做仿真。如果估计值为[x,y,v,theta,w],测量值为[x,y,v,the
- 线性卡尔曼跟踪融合滤波算法(Matlab仿真)
奔袭的算法工程师
感知后处理人工智能算法自动驾驶目标检测信号处理
卡尔曼滤波的原理和理论在CSDN已有很多文章,这里不再赘述,仅分享个人的理解和Matlab仿真代码。1单目标跟踪假设目标的状态为X=[x,y,vx,vy],符合匀速直线运动目标,也即其中F为状态转移矩阵,在匀速直线(constvelocity)运动模型时,整个系统为线性状态,可以直接调用卡尔曼滤波的几个公式考虑到实际测量值的状态,Z=[x,y,vx,vy],观测矩阵可以写作如果测量值Z=[x,y]
- 惯性导航---里程计非完整性约束
Nav.
导航组合导航
惯性导航—里程计非完整性约束1非完整性约束原理 在进行管道中心线定位时,惯性导航系统在初始化后通过不断地力学编排更新载体的姿态、速度和位置信息,但是由于传感器是惯性器件,其导航误差会不断累积,这便需要借助外界观测量辅助惯性导航系统,才可以进行精确的定位。外界辅助分为姿态辅助观测、速度辅助观测和位置辅助观测。通常位置辅助观测可由全球卫星定位系统获取,速度辅助观测可以由里程计或多普勒测速仪获取。本文
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found