最近项目需要,实现文本的词频分析,折腾了几天才完成任务,有点成就感,最后整理总结一下这部分的内容,希望更多同僚受益。
环境:Python3.6
pip install jieba
userdict
,后文详解参考
"结巴"中文分词:做最好的Python中文分词组件
支持三种分词模式:
支持繁体分词
支持自定义词典
jieba.cut
方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式jieba.cut_for_search
方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细jieba.cut
以及jieba.cut_for_search
返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(…))转化为list#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
用法: jieba.load_userdict(file_name)
# file_name为自定义词典的路径
词典格式和dict.txt
一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
userdict.txt
即补充词库示例宜信普惠 7
宜信 10
极速模式 20
北京清华大学 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
八一双鹿 3 nz
台中
凱特琳 nz
Edu Trust认证 2000
#encoding=utf-8
from __future__ import print_function, unicode_literals
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")
import jieba.posseg as pseg
jieba.add_word('石墨烯')
jieba.add_word('凱特琳')
jieba.del_word('自定义词')
test_sent = (
"李小福是创新办主任也是云计算方面的专家; 什么是八一双鹿\n"
"例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类\n"
"「台中」正確應該不會被切開。mac上可分出「石墨烯」;此時又可以分出來凱特琳了。"
)
words = jieba.cut(test_sent)
print('/'.join(words))
print("="*40)
result = pseg.cut(test_sent)
for w in result:
print(w.word, "/", w.flag, ", ", end=' ')
print("\n" + "="*40)
terms = jieba.cut('easy_install is great')
print('/'.join(terms))
terms = jieba.cut('python 的正则表达式是好用的')
print('/'.join(terms))
print("="*40)
# test frequency tune
testlist = [
('今天天气不错', ('今天', '天气')),
('如果放到post中将出错。', ('中', '将')),
('我们中出了一个叛徒', ('中', '出')),
]
for sent, seg in testlist:
print('/'.join(jieba.cut(sent, HMM=False)))
word = ''.join(seg)
print('%s Before: %s, After: %s' % (word, jieba.get_FREQ(word), jieba.suggest_freq(seg, True)))
print('/'.join(jieba.cut(sent, HMM=False)))
print("-"*40)
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
停用词:停用词是指在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词,这些字或词即被称为Stop Words(停用词)。这些停用词都是人工输入、非自动化生成的,生成后的停用词会形成一个停用词表。但是,并没有一个明确的停用词表能够适用于所有的工具。甚至有一些工具是明确地避免使用停用词来支持短语搜索的。
使用哈工大停用词词库:下载地址
参考
完整代码:
from collections import Counter
import jieba
jieba.load_userdict('userdict.txt')
# 创建停用词list
def stopwordslist(filepath):
stopwords = [line.strip() for line in open(filepath, 'r').readlines()]
return stopwords
# 对句子进行分词
def seg_sentence(sentence):
sentence_seged = jieba.cut(sentence.strip())
stopwords = stopwordslist('G:\\哈工大停用词表.txt') # 这里加载停用词的路径
outstr = ''
for word in sentence_seged:
if word not in stopwords:
if word != '\t':
outstr += word
outstr += " "
return outstr
inputs = open('hebing_wenben\\zuoxi_wenben.txt', 'r') #加载要处理的文件的路径
outputs = open('output.txt', 'w') #加载处理后的文件路径
for line in inputs:
line_seg = seg_sentence(line) # 这里的返回值是字符串
outputs.write(line_seg)
outputs.close()
inputs.close()
# WordCount
with open('output.txt', 'r') as fr: #读入已经去除停用词的文件
data = jieba.cut(fr.read())
data = dict(Counter(data))
with open('cipin.txt', 'w') as fw: #读入存储wordcount的文件路径
for k, v in data.items():
fw.write('%s,%d\n' % (k, v))
手把手教你制作 中英文 词云 | python demo