- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- 对比分析:Rasa、Dialogflow等主流意图识别框架
AI原生应用开发
ai
对比分析:Rasa、Dialogflow等主流意图识别框架——从“翻译官”到“定制师”的对话系统实战指南关键词:意图识别、对话系统、Rasa、Dialogflow、自然语言理解(NLU)摘要:在智能客服、语音助手等AI产品中,“听懂人话”是核心能力。本文将以“意图识别框架”为切入点,用“翻译官”“定制厨房”等生活化比喻,对比分析Rasa(开源派代表)与Dialogflow(商业云服务代表)的技术原
- 唤醒芯片公司调研
ai-ai360
python
https://docs.espressif.com/projects/esp-sr/en/latest/esp32/speech_command_recognition/README.html做唤醒芯片公司,叫乐鑫信息科技公司,主要做aiot唤醒词,nlu,tts芯片,文档写的不错,很系统
- 为什么大模型都是decoder-only架构?
AGI大模型老王
架构大模型入门大模型教程学习人工智能大模型学习大模型
大家好!今天和大家聊聊,为什么大模型都是decoder-only架构目前主要的架构有3种:Bert为代表的encoder-only架构,ChatGLM为代表的encoder-decoder,以及GPT为代表的decoder-onlyencoder-only采用的是maskedtoken预训练,一般用于nlu任务。decoder-only采用nexttoken预训练,天然适用生成任务。encoder
- 第15篇:基于Milvus实现自然语言理解的实战案例
Gemini技术窝
milvusAIGC人工智能自然语言处理
自然语言理解(NLU)是自然语言处理(NLP)的一个重要分支,旨在让计算机理解和解释人类语言。NLU广泛应用于搜索引擎、智能客服、推荐系统等领域。本文将详细介绍如何基于Milvus实现自然语言理解,特别是如何实现词嵌入与句嵌入、语义相似度计算。通过详细的代码示例,逐步讲解各个步骤的原理和实现方法。文章目录自然语言理解的基本概念词嵌入句嵌入语义相似度计算环境准备安装必要的依赖包词嵌入与句嵌入的实现使
- Rasa 的工作流程
YiHanXii
Rasalinux人工智能docker语言模型
Rasa是一个非常灵活的对话系统框架,它的工作流程涉及多个步骤,包括意图识别、槽位填充、对话管理、以及执行自定义动作等。下面是Rasa工作流程的详细解释:1.用户输入用户通过对话界面(比如聊天框、语音输入等)发送信息。这个信息可以是自然语言文本,Rasa将对其进行处理。2.自然语言理解(NLU)当用户输入信息时,Rasa首先通过自然语言理解(NLU)模块对用户的输入进行分析。NLU的主要任务包括:
- Rasa中config.yml文件信息详细解释
YiHanXii
Rasa人工智能
在Rasa中,config.yml是非常关键的配置文件之一,它的作用是定义你的对话机器人使用哪些模型组件来完成:意图识别(NLU)实体抽取(NER)对话管理(Core)作用简述部分功能recipe指定使用哪种Rasa模型训练流程assistant_id项目的唯一标识符,用于部署和版本管理language机器人处理的语言pipeline定义NLU模块的组件流水线(意图识别+实体识别)policies
- Rasa总体目录架构介绍
YiHanXii
Rasa架构docker语言模型
详细讲解一下每个主要文件/目录的作用,以及之后如何一步步使用它们来训练和运行你的聊天机器人。Rasa项目结构说明(初始化后生成的主要文件).├──actions/│└──actions.py#自定义action的地方(Python脚本,和数据库/接口交互等)├──data/│├──nlu.yml#训练RasaNLU的数据(意图识别+实体抽取)│├──rules.yml#规则驱动对话的定义│├──s
- NLU-预训练模型-2018:Bert(二)【“Masked LM”缺点:①预训练与微调不一致;②忽略了掩码位置间的依赖关系】【复杂度:O(n^2·d);n:输入序列长度(规定最长512)】
u013250861
#NLP/词向量_预训练模型bert人工智能深度学习
五、BERT中的词嵌入1、为什么要使用BERT的嵌入使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。我们可以用这些词和句子的嵌入向量做什么?首先,这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。其次,或许更重要的是,这些向量被
- DeepSeek智能政务大脑:城市服务知识库构建全指南——从RAG架构到民生场景落地实践
Coderabo
DeepSeekR1模型企业级应用政务架构
DeepSeek赋能城市智慧升级:基于RAG架构的市民服务智能知识库构建全解一、需求分析与技术选型1.1市民服务场景需求市民服务智能知识库需要解决政务咨询效率低下、专业术语难理解、多轮对话能力弱等核心问题。系统需具备:自然语言理解能力(NLU)异构知识整合能力政策法规精准解读能力多轮对话上下文管理应急服务联动机制1.2DeepSeek技术栈选择基于DeepSeek-Large语言模型构建核心系统,
- 大模型与自然语言理解(NLU):差异与联系
技术流 Gavin
AIoTpython语言模型ai
近年来,人工智能领域取得了显著进展,尤其是在自然语言处理(NLP)方面。大模型和自然语言理解(NLU)作为NLP的两个重要分支,常常被提及,但它们之间存在着本质区别。1.定义与目标大模型:通常指拥有庞大参数规模(数十亿甚至数千亿)的深度学习模型,例如GPT-3、LaMDA等。它们通过海量文本数据进行训练,旨在学习语言的统计规律,并能够生成流畅、连贯的文本。NLU:是NLP的一个子领域,专注于让机器
- 【实战项目】Python 手撕一个基于最新端到端大模型的语音聊天系统
kakaZhui
解码前沿多模态大模型:认知分析和工业级实战python开发语言AIGC人工智能chatgpt
写在前面:为什么需要端到端语音交互近年来,随着深度学习技术的飞速发展,语音交互技术取得了显著的进步。从智能音箱到虚拟助手,语音交互已经渗透到我们生活的方方面面。然而,传统的语音交互系统往往采用“语音识别(ASR)-自然语言理解(NLU)-对话管理(DM)-自然语言生成(NLG)-语音合成(TTS)”的级联式架构,这种架构存在着诸多弊端,如:错误累积:每个模块的错误都会传递到下一个模块,导致最终结果
- 硅谷硬核Rasa课程、Rasa培训、Rasa面试系列之: Rasa 3.x Config
StarSpaceNLP
面试职场和发展
ModelConfiguration配置文件定义了模型根据用户输入进行预测的组件和策略。recipe键允许不同类型的配置和模型架构。目前,只支持“default.v1”。语言键和管道键指定模型用于进行NLU预测的组件。Policys键定义了模型用于预测下一个操作的策略。如果您不知道要选择哪些组件或策略,可以使用建议的配置功能,这将推荐合理的默认设置。SuggestedConfig您可以将管道或策略
- 电商智能客服实战(三)-需求感知模块具体实现
power-辰南
企业级AI项目实战人工智能NERNLU自然语言AIAGENT
电商智能客服实战(一)—概要设计电商智能客服实战(二)需求感知模块模型微调实现一、整体架构设计1.1模块定位需求感知模块作为智能客服系统的前端处理单元,负责对用户输入进行多维度解析,输出结构化语义理解结果,为下游决策引擎提供数据支撑。1.2核心流程图用户输入需求感知模块情感分析NLU意图识别NER实体识别参数提取规划模块AutoGPT生成步骤规则引擎匹配反馈集成工具模块订单查询API工单API知识
- 【智能客服】智能客服的核心技术-对话系统
姚瑞南
智能客服人工智能自然语言处理chatgpt
目录一、基本概念二、对话系统的应用场景三、对话系统的常见构建方式四、一般架构AutomaticSpeechRecognition(ASR)NaturalLanguageUnderstanding(NLU)DialogueManagement(DM)NaturalLanguageGeneration(NLG)基于模板基于统计一、基本概念对话系统:与真人进行对话的系统。这里首先用案例介绍一下对话系统的
- 自然语言处理NLP入门 -- 第十节简单的聊天机器人
山海青风
#自然语言处理自然语言处理chatgpt
一、为什么要做聊天机器人?在互联网时代,我们日常接触到的“在线客服”“自动问答”等,大多是以聊天机器人的形式出现。它能帮我们快速回复常见问题,让用户获得及时的帮助,并在一定程度上减少人工客服的压力。同时,聊天机器人也是了解自然语言处理(NLP)最好的实战项目之一。因为它整合了文字理解(NLU)、对话管理、文本生成(NLG)等多方面知识,既能看到很直观的对话效果,也能结合深度学习模型让机器人变得更智
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 【AI引领潮流|未来智慧生活】国内机器聊天软件推荐(超全!)and人工智能&智能学习
熔光
人工智能AI软件智能学习生活
1.AI聊天软件概述1.1AI聊天软件的关键技术1.2AI聊天软件的应用1.3AI聊天软件的挑战1.4总结2.智普清言3.文心一言4.讯飞星火5.知元AI6.白马AI7.ChatGPT8.一览AI应用链接9.人工智能10.机器学习↓个人主页:C_GUIQU↑1.AI聊天软件概述AI聊天软件是一种利用自然语言处理(NLP)、自然语言理解(NLU)和机器学习(ML)技术构建的软件,它能够理解用户的自然
- Rasa:开源的机器学习框架
Indra_ran
开源机器学习人工智能linuxcentos运维
一、Rasa简介Rasa是一套用来构建基于上下文的AI小助手和聊天机器人框架。分为两个主要的模块:NLU:自然语言理解模块,实现意图识别以及槽值的提取,将用户的输入转化为结构性数据,在训练过程中,为了提高从用户信息的实体识别能力,采用了预先训练的实体提取器Pre-trainedEntityExtractors,正则表达式Regexes,同义词Synonyms等RasaCore:对话管理模块,也是一
- Rasa框架的优点和缺点
不会编程的程序猿ᅟ
rasa
优点1.开源和免费Rasa是开源的,无需支付许可费用,可自由下载和修改源码,适合预算有限或需要定制化解决方案的团队。企业可以完全掌控自己的对话系统,无需依赖外部服务。2.数据隐私和安全Rasa支持完全本地部署,无需将数据上传到第三方服务器,数据隐私保护性高,非常适合医疗、金融和其他注重数据安全的行业。3.高度可定制化可以根据需求修改NLU管道、策略和模型。支持自定义动作(CustomActions
- Rasa的工作流程
不会编程的程序猿ᅟ
rasa
Rasa的工作流程分为两个主要部分:NLU(自然语言理解)和Core(对话管理)。整个流程包括从用户输入到最终响应的多个步骤,下面是详细的工作流程解析:1.用户输入用户通过聊天界面(如微信、Telegram、Slack或Web前端)发送自然语言消息,例如:"我想预订一张明天去北京的火车票"2.自然语言理解(NLU)Rasa的NLU模块解析用户输入,提取意图和实体。2.1意图识别NLU模块会识别用户
- Encoder(编码器)和Decoder(解码器)有什么区别
YiHanXii
nlp人工智能
编码器和解码器的区别主要功能:编码器:编码器的主要功能是处理输入数据,并将其转换成一种内部表示(contextvectors),这种表示捕捉了输入数据的重要特征。编码器特别适合于自然语言理解(NLU)任务。解码器:解码器的主要功能是基于某种内部表示或前一个状态的输出来生成新的输出。解码器特别适合于自然语言生成(NLG)任务。处理方式:编码器通常一次性处理整个输入序列,捕捉序列中的信息,并生成一个固
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 论文-A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
魏鹏飞
1.简称论文《AStack-PropagationFrameworkwithToken-LevelIntentDetectionforSpokenLanguageUnderstanding》,作者LiboQin(HarbinInstituteofTechnology,China),经典的NLU论文(SemanticFrame)。2.摘要意图检测和槽位填充是构建口语理解(SLU)系统的两个主要任务。
- 大模型的学习 LLaMa和ChatGLM,minichatgpt4
贝猫说python
学习llama人工智能
LLaMa和ChatGLM,minichatgpt4什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?答:Bert的模型由多层双向的Transformer编码器组成,由12层组成,768隐藏单元,12个head,总参数量110M,约1.15亿参数量。NLU(自然语言理解)任务效果很好,单卡GPU可以部署,速度快,V100GPU下1秒能处理2千条以上。ChatGLM-6B,
- 大模型学习笔记二:prompt工程
谢白羽
学习笔记prompt
文章目录一、经典AI女友Prompt二、prompt怎么做?1)注重格式:2)prompt经典构成3)简单prompt的python询问代码4)python实现订阅手机流量套餐的NLU5)优化一:加入垂直领域推荐6)优化二:改变语气、口吻等风格。7)优化三:实现统一口径8)纯OpenAI方案9)纯OpenAI和自制问答的对比三、prompt提示工程师进阶技巧1)思维链(ChainofThought
- OpenAI GPT 和 GPT2 模型详解
NLP与人工智能
OpenAIGPT是在GoogleBERT算法之前提出的,与BERT最大的区别在于,GPT采用了传统的语言模型进行训练,即使用单词的上文预测单词,而BERT是同时使用上文和下文预测单词。因此,GPT更擅长处理自然语言生成任务(NLG),而BERT更擅长处理自然语言理解任务(NLU)。1.OpenAIGPTOpenAI在论文《ImprovingLanguageUnderstandingbyGener
- 对话机器人(二)——RASA概述与安装
就要辣谢谢。
对话机器人人工智能自然语言处理深度学习
注:RASA版本为3.11.RASA简介RASA是构建对话机器人的开源机器学习框架。NLU:确定意图,捕获关键上下文信息。CORE:提供多轮对话管理机制,自动学习上下文与当前意图的关联性。2.RASA系统架构RASA开源体系结构NLU:意图分类、实体提取、响应检索。以管道的方式处理用户对话。对话管理:根据上下文决定对话中的下一个动作。代理:接收用户输入消息,返回RASA系统的回答。连接NLU和DM
- RASA3.X(二)--常见命令详解
hanscalZheng
RASARASA命令模式
目录创建新项目训练模型交互式学习与助手交谈启动服务启动操作服务可视化故事评估模型训练和测试数据拆分创建新项目以下命令使用示例训练数据为你建立一个完整的项目。rasainit这将创建以下文件:.├──__init__.py├──actions.py├──config.yml├──credentials.yml├──data│├──nlu.md│└──stories.md├──domain.yml├─
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l