今天看到paperweekly上有人分享了一个WGAN-GP的实现,是以MNIST为数据集,代码简洁,结构清晰。我最近也在看GAN的相关内容,就下载下来做个参考。
代码地址:https://github.com/bojone/gan/
对于这个基于tensorflow实现的代码,我对其进行了简单的注释
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import numpy as np
from scipy import misc,ndimage
#读入本地的MNIST数据集,该函数为mnist专用
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
batch_size = 100 #每个batch的大小
width,height = 28,28 #每张图片包含28*28个像素点
mnist_dim = width*height #用一个数字数组表示一张图,那么这个数组展开成向量的长度就是28*28=784
random_dim = 10 #每张图表示一个数字,从0到9
epochs = 1000000 #共100万轮
def my_init(size): #从[-0.05,0.05]的均匀分布中采样得到维度是size的输出
return tf.random_uniform(size, -0.05, 0.05)
#判别器相关参数设定
D_W1 = tf.Variable(my_init([mnist_dim, 128])) #784*128
D_b1 = tf.Variable(tf.zeros([128])) #长度为128的一维张量,值均为0
D_W2 = tf.Variable(my_init([128, 32]))
D_b2 = tf.Variable(tf.zeros([32]))
D_W3 = tf.Variable(my_init([32, 1]))
D_b3 = tf.Variable(tf.zeros([1]))
D_variables = [D_W1, D_b1, D_W2, D_b2, D_W3, D_b3]
#生成器相关参数设定
G_W1 = tf.Variable(my_init([random_dim, 32]))
G_b1 = tf.Variable(tf.zeros([32]))
G_W2 = tf.Variable(my_init([32, 128]))
G_b2 = tf.Variable(tf.zeros([128]))
G_W3 = tf.Variable(my_init([128, mnist_dim]))
G_b3 = tf.Variable(tf.zeros([mnist_dim]))
G_variables = [G_W1, G_b1, G_W2, G_b2, G_W3, G_b3]
#判别器网络结构
def D(X):
X = tf.nn.relu(tf.matmul(X, D_W1) + D_b1) #X的维度是100*784,D_W1维度是784*128,得到结果维度为100*128
X = tf.nn.relu(tf.matmul(X, D_W2) + D_b2) #X的维度是100*128,D_W2维度是128*32,得到结果维度为100*32
X = tf.matmul(X, D_W3) + D_b3 #X的维度是100*32,D_W3维度是32*1,得到结果维度为100*1
return X
#生成器网络结构
def G(X):
X = tf.nn.relu(tf.matmul(X, G_W1) + G_b1) #X的维度是100*10,G_W1维度是10*32,得到结果维度为100*32
X = tf.nn.relu(tf.matmul(X, G_W2) + G_b2) #X的维度是100*32,G_W2维度是32*128,得到结果维度为100*128
X = tf.nn.sigmoid(tf.matmul(X, G_W3) + G_b3) #X的维度是100*128,G_W3维度是128*784,得到结果维度为100*784
return X
#real_X是真实样本,random_X是噪音数据,random_Y是生成器生成的伪样本
real_X = tf.placeholder(tf.float32, shape=[batch_size, mnist_dim])
random_X = tf.placeholder(tf.float32, shape=[batch_size, random_dim])
random_Y = G(random_X)
#求惩罚项,这个这个惩罚是“软约束”,最终的结果不一定满足这个约束,但是会在约束上下波动。这里Lipschitz约束的C=1
eps = tf.random_uniform([batch_size, 1], minval=0., maxval=1.) #eps是U[0,1]的随机数
X_inter = eps*real_X + (1. - eps)*random_Y #在真实样本和生成样本之间随机插值,希望这个约束可以“布满”真实样本和生成样本之间的空间
grad = tf.gradients(D(X_inter), [X_inter])[0] #求梯度
grad_norm = tf.sqrt(tf.reduce_sum((grad)**2, axis=1)) #求梯度的二范数
grad_pen = 10 * tf.reduce_mean(tf.nn.relu(grad_norm - 1.)) #Lipschitz限制是要求判别器的梯度不超过K,这个loss项是希望判别器的梯度离K(此处K设为1)越近越好
#判别器和生成器的损失函数
D_loss = tf.reduce_mean(D(real_X)) - tf.reduce_mean(D(random_Y)) + grad_pen
G_loss = tf.reduce_mean(D(random_Y)) #越接近真实样本越好
#判别器和生成器的优化函数
D_solver = tf.train.AdamOptimizer(1e-4, 0.5).minimize(D_loss, var_list=D_variables)
G_solver = tf.train.AdamOptimizer(1e-4, 0.5).minimize(G_loss, var_list=G_variables)
#创建对话,初始化所有变量
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#是否存在“out”文件夹,不存在的话新建一个,存放实验结果
if not os.path.exists('out/'):
os.makedirs('out/')
for e in range(epochs):
for i in range(5): #每轮计算5个batch
real_batch_X,_ = mnist.train.next_batch(batch_size) #随机抓取训练数据中的100个批处理数据点
random_batch_X = np.random.uniform(-1, 1, (batch_size, random_dim)) #从均匀分布中采样,输出100*10个样本
_,D_loss_ = sess.run([D_solver,D_loss], feed_dict={real_X:real_batch_X, random_X:random_batch_X})
random_batch_X = np.random.uniform(-1, 1, (batch_size, random_dim))
_,G_loss_ = sess.run([G_solver,G_loss], feed_dict={random_X:random_batch_X})
#每1000轮输出一次当前结果
if e % 1000 == 0:
print 'epoch %s, D_loss: %s, G_loss: %s'%(e, D_loss_, G_loss_)
n_rows = 6
check_imgs = sess.run(random_Y, feed_dict={random_X:random_batch_X}).reshape((batch_size, width, height))[:n_rows*n_rows] #由生成器得到伪样本,维度为100*784,reshape为100个28*28的矩阵,取6*6个矩阵构成一张图
imgs = np.ones((width*n_rows+5*n_rows+5, height*n_rows+5*n_rows+5)) #203*203的值为1的二维矩阵
for i in range(n_rows*n_rows):
imgs[5+5*(i%n_rows)+width*(i%n_rows):5+5*(i%n_rows)+width+width*(i%n_rows), 5+5*(i/n_rows)+height*(i/n_rows):5+5*(i/n_rows)+height+height*(i/n_rows)] = check_imgs[i]
misc.imsave('out/%s.png'%(e/1000), imgs)
转自 https://blog.csdn.net/qq_20943513/article/details/73129308