AT&T汇编

参考链接

Linux下的汇编

Linux 下用汇编语言编写的代码具有两种不同的形式。第一种是完全的汇编代码,指的是整个程序全部用汇编语言编写。尽管是完全的汇编代码,Linux 平台下的汇编工具也吸收了 C 语言的长处,使得程序员可以使用 #include、#ifdef 等预处理指令,并能够通过宏定义来简化代码。第二种是内嵌的汇编代码,指的是可以嵌入到C语言程序中的汇编代码片段。虽然 ANSI 的 C 语言标准中没有关于内嵌汇编代码的相应规定,但各种实际使用的 C 编译器都做了这方面的扩充,这其中当然就包括 Linux 平台下的 GCC。


语法

绝大多数 Linux 程序员以前只接触过DOS/Windows 下的汇编语言,这些汇编代码都是 Intel 风格的。但在 Unix 和 Linux 系统中,更多采用的还是 AT&T 格式,两者在语法格式上有着很大的不同

在 AT&T 汇编格式中,寄存器名要加上 '%' 作为前缀 pushl %eax

在 AT&T 汇编格式中,用 '$' 前缀表示一个立即操作数 pushl $1

目标操作数在源操作数的右边 movl $1,%eax

操作数的字长由操作符的最后一个字母决定 b,w,l

绝对转移和调用指令(jmp/call)的操作数前要加上'*'作为前缀

远程转移指令和远程子调用指令的操作码,在 AT&T 汇编格式中为 "ljmp" 和 "lcall"

内存寻址:section:disp(base, index, scale) movw array(%ebx, %eax, 4), %cx ——由于 Linux 工作在保护模式下,用的是 32 位线性地址,所以在计算地址时不用考虑段基址和偏移量,而是采用如下的地址计算方法:
disp + base + index * scale


程序

Linux 是一个运行在保护模式下的 32 位操作系统,采用 flat memory 模式,目前最常用到的是 ELF 格式的二进制代码。一个 ELF 格式的可执行程序通常划分为如下几个部分:.text、.data 和 .bss,其中 .text 是只读的代码区,.data 是可读可写的数据区,而 .bss 则是可读可写且没有初始化的数据区。代码区和数据区在 ELF 中统称为 section,根据实际需要你可以使用其它标准的 section,也可以添加自定义 section,但一个 ELF 可执行程序至少应该有一个 .text 部分。 下面给出我们的第一个汇编程序,用的是 AT&T 汇编语言格式:

#hello.s 
.data                    # 数据段声明
        msg : .string "Hello, world!\\n" # 要输出的字符串
        len = . - msg                   # 字串长度
.text                    # 代码段声明
.global _start           # 指定入口函数
        
_start:                  # 在屏幕上显示一个字符串
        movl $len, %edx  # 参数三:字符串长度
        movl $msg, %ecx  # 参数二:要显示的字符串
        movl $1, %ebx    # 参数一:文件描述符(stdout) 
        movl $4, %eax    # 系统调用号(sys_write) 
        int  $0x80       # 调用内核功能
        
                         # 退出程序
        movl $0,%ebx     # 参数一:退出代码
        movl $1,%eax     # 系统调用号(sys_exit) 
        int  $0x80       # 调用内核功能

ELF格式分析见另一篇文档


汇编工具

  1. 汇编器

    汇编器(assembler)的作用是将用汇编语言编写的源程序转换成二进制形式的目标代码。Linux 平台的标准汇编器是 GAS,它是 GCC 所依赖的后台汇编工具,通常包含在 binutils 软件包中。GAS 使用标准的 AT&T 汇编语法,可以用来汇编用 AT&T 格式编写的程序:

    as -o hello.o hello.s

    Linux 平台上另一个经常用到的汇编器是 NASM,它提供了很好的宏指令功能,并能够支持相当多的目标代码格式,包括 bin、a.out、coff、elf、rdf 等。NASM 采用的是人工编写的语法分析器,因而执行速度要比 GAS 快很多,更重要的是它使用的是 Intel 汇编语法,可以用来编译用 Intel 语法格式编写的汇编程序:

    nasm -f elf hello.asm

  2. 链接器

    目标代码不能直接运行,需要经过链接。链接器的作用是将多个目标代码连接成一个可执行文件。ld作为标准的链接程序,同样包含在bitutils中。

    ld -s -o hello hello.o

  3. 调试器

    Linux 下调试汇编代码既可以用 GDB、DDD 这类通用的调试器,也可以使用专门用来调试汇编代码的 ALD(Assembly Language Debugger)。


系统调用

  1. linux平台有两种方式使用系统调用:

    • 利用封装后的C库(libc)
    • 通过汇编直接调用

    linux的系统调用也是通过中断实现的

    • eax :存放系统调用号
    • ebx,ecx,edx,esi,edi: 存放参数。
    • 系统调用结束eax: 存放返回值

内联汇编

如果只是想对关键代码段进行优化,或许更好的办法是将汇编指令嵌入到 C 语言程序中,从而充分利用高级语言和汇编语言各自的特点。但一般来讲,在 C 代码中嵌入汇编语句要比"纯粹"的汇编语言代码复杂得多,因为需要解决如何分配寄存器,以及如何与C代码中的变量相结合等问题。

最基本的格式:

`__asm__("asm statement")`

如果多条语句

```
__asm__( "pushl %%eax \\n\\t"
     "movl $0, %%eax \\n\\t"
     "popl %eax");
```

通常嵌入到 C 代码中的汇编语句很难做到与其它部分没有任何关系,因此更多时候需要用到完整的内联汇编格式:

`__asm__("asm statements" : outputs : inputs : registers-modified);`

限定符的意义

"m"、"v"、"o" 内存单元
"r" 任何寄存器
"q" 寄存器eax、ebx、ecx、edx之一
"i"、"h" 直接操作数
"E"和"F" 浮点数
"g" 任意
"a"、"b"、"c"、"d" 分别表示寄存器eax、ebx、ecx和edx
"S"和"D" 寄存器esi、edi
"I" 常数(0至31)

示例程序

/* inline.c */
int main()
{
    int a = 10, b = 0;
    __asm__ __volatile__("movl %1, %%eax;\\n\\r"
                         "movl %%eax, %0;"
                         :"=r"(b)      /* 输出 */    
                         :"r"(a)       /* 输入 */
                         :"%eax");     /* 受影响的寄存器 */
    
    printf("Result: %d, %d\\n", a, b);
}

上面的程序完成将变量a的值赋予变量b,有几点需要说明:

变量b是输出操作数,通过%0来引用,而变量a是输入操作数,通过%1来引用。

输入操作数和输出操作数都使用r进行约束,表示将变量a和变量b存储在寄存器中。输入约束和输出约束的不同点在于输出约束多一个约束修饰符'='。

在内联汇编语句中使用寄存器eax时,寄存器名前应该加两个'%',即%%eax。内联汇编中使用%0、%1等来标识变量,任何只带一个'%'的标识符都看成是操作数,而不是寄存器。

内联汇编语句的最后一个部分告诉GCC它将改变寄存器eax中的值,GCC在处理时不应使用该寄存器来存储任何其它的值。

由于变量b被指定成输出操作数,当内联汇编语句执行完毕后,它所保存的值将被更新。

在内联汇编中用到的操作数从输出部的第一个约束开始编号,序号从0开始,每个约束记数一次,指令部要引用这些操作数时,只需在序号前加上'%'作为前缀就可以了。需要注意的是,内联汇编语句的指令部在引用一个操作数时总是将其作为32位的长字使用,但实际情况可能需要的是字或字节,因此应该在约束中指明正确的限定符:

你可能感兴趣的:(AT&T汇编)