NLP应用一:卷积网络有监督文本分类(论文+code)

一、卷积网络在NLP上的运用简析

1、输入:句子或文档

类似于图片处理需要将图片转化成矩阵形式,矩阵中的向量代表的是像素点,同样应用到文本上是每行为单词向量[5],通常得到这种向量的处理方式是WordEmbeding(低维表示,不懂参考解释),常用的方法有:word2vec或者GloVe也可以是Onehot形式形成单词索引。

2、算法模型:卷积网络

区别于图像处理,卷积网络通过窗口在局部区域滑动获取卷积运算后的值,对于文本中窗口大小的选择,其宽度通常与输入矩阵宽度相同,高度或区域大小可能不同,但一次滑动窗口通常设置超过2-5个单词。还需要注意的是,对于图像来说通道设置为RGB,文本来说具体的通道需要根据实际方法而定


二、论文实例(Convolutional Neural Networks for Sentence Classification)

代码链接
文章链接
特点:词向量和深度学习结合实现文本分类
这里这要借鉴实现原理及代码

NLP应用一:卷积网络有监督文本分类(论文+code)_第1张图片
卷积处理过程

1.输入:为词向量从上到下排序的矩阵(width-最长句子词向量长,height-embeding设置值)。
矩阵的类型有静态(static)和非静态(non-static)方式。static方式采用比如word2vec预训练的词向量,训练过程不更新词向量,实质上属于迁移学习了,特别是数据量比较小的情况下,采用静态的词向量往往效果不错。non-static则是在训练过程中更新词向量。推荐的方式是 non-static 中的 fine-tunning方式,它是以预训练(pre-train)的word2vec向量初始化词向量,训练过程中调整词向量,能加速收敛,当然如果有充足的训练数据和资源,直接随机初始化词向量效果也是可以的。
处理方式:CNN处理图片的方式是左右滑动窗口,处理文本是上下,类似于N-Gream的方式,这里的N即embeding值,比如:每两行卷积一次就是2-gream。
2.卷积网络参数:从n-gream的角度看,n的取值范围通常取2,3,4,这里卷积核的大小取的是(2,3,4)数量分别为100,100,100,总共为300个卷积核
3.输出:情绪分类结果,这里作者用的数据集中有两种情绪(积极、消极,即二分类)

NLP应用一:卷积网络有监督文本分类(论文+code)_第2张图片
文本处理过程示意图

三、code分析
1、数据处理
输入数据为rt-polarity.neg和rt-polarity.pos,包含摘自影评得到英文评论。
主要模块如下:

def load_data_and_labels(positive_data_file, negative_data_file):
    """
    Loads MR polarity data from files, splits the data into words and generates labels.
    Returns split sentences and labels.
    加载数据文件,生成对应标签,清洗数据,合并分别生成数据文件和标签文件
    """
    # Load data from files
    positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines())
    # delete blank mark('\n','\r','\t',''),s.strip(something)
    positive_examples = [s.strip() for s in positive_examples]
    negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines())
    negative_examples = [s.strip() for s in negative_examples]
    # Split by words
    x_text = positive_examples + negative_examples
    # merge to one text
    x_text = [clean_str(sent) for sent in x_text]
    # Generate labels,second classification
    positive_labels = [[0, 1] for _ in positive_examples]
    negative_labels = [[1, 0] for _ in negative_examples]
    # merge to one label text
    y = np.concatenate([positive_labels, negative_labels], 0)
    return [x_text, y]

清洗数据过程如下:

def clean_str(string):
    """
    Tokenization/string cleaning for all datasets except for SST.
    Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
    """
    #sub正则替换函数,除A-Za-z0-9(),!?'`外的字符,去除
    string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
    #\'s替换成 \'s(加空格)
    string = re.sub(r"\'s", " \'s", string)
    string = re.sub(r"\'ve", " \'ve", string)
    string = re.sub(r"n\'t", " n\'t", string)
    string = re.sub(r"\'re", " \'re", string)
    string = re.sub(r"\'d", " \'d", string)
    string = re.sub(r"\'ll", " \'ll", string)
    string = re.sub(r",", " , ", string)
    string = re.sub(r"!", " ! ", string)
    string = re.sub(r"\(", " \( ", string)
    string = re.sub(r"\)", " \) ", string)
    string = re.sub(r"\?", " \? ", string)
    #两个以上连续的空白符,删除
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip().lower()

python的re模块(正则表达式)详解
2、网络模型
嵌入层、卷积层、池化层、Dropout层、预测层
1.初始化参数

sequence_length, num_classes, vocab_size,embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0

2.封装的embedding层
它将词汇词索引映射到低维向量表示中。 它本质上是一个从数据中学习的查找表。

 #封装embedding层
        with tf.device('/cpu:0'), tf.name_scope("embedding"):
            self.W = tf.Variable(
                #self.W可以理解为词向量词典,vocab_size为max_document_length,随机初始化为(-1,1)
                tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                name="W")
            #params中查找与ids对应的表示。W中查找self.input_x对应的表示
            self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
            #self.embedded_chars_expanded:将词向量表示扩充一个维度(embedded_chars * 1)
            #维度变为[句子数量, sequence_length, embedding_size, 1]
            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)

3.卷积层和池化层

        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters]
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
                conv = tf.nn.conv2d(
                    self.embedded_chars_expanded,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
 pooled = tf.nn.max_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1],
                    strides=[1, 1, 1, 1],
                    padding='VALID',
                    name="pool")
                pooled_outputs.append(pooled)
        # Combine all the pooled features,get from three filters
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(pooled_outputs, 3)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])

这里需要注意多个filter的迭代写法,同样看出TensorFlow的灵活性。其中h是将非线性应用于卷积输出的结果。 每个过滤器在整个嵌入中滑过,但是它涵盖的字数有所不同。 “VALID”填充意味着我们将过滤器滑过我们的句子而不填充边缘,执行一个窄的卷积,给出一个形状[1,sequence_length - filter_size + 1,1,1]的输出。 在特定过滤器大小的输出上执行最大化池将留下一张张量[batch_size,1,num_filters]。 这本质上是一个特征向量,其中最后一个维度对应于我们的特征。 一旦我们从每个过滤器大小得到所有的汇集输出张量,我们将它们组合成一个长形特征向量[batch_size,num_filters_total]。 在tf.reshape中使用-1可以告诉TensorFlow在可能的情况下平坦化维度。
4.Dropout层及预测

        # Add dropout
        with tf.name_scope("dropout"):
            self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)

        # Final (unnormalized) scores and predictions
        with tf.name_scope("output"):
            W = tf.get_variable(
                "W",
                shape=[num_filters_total, num_classes],
 initializer=tf.contrib.layers.xavier_initializer())
            b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
            l2_loss += tf.nn.l2_loss(W)
            l2_loss += tf.nn.l2_loss(b)
            self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
            self.predictions = tf.argmax(self.scores, 1, name="predictions")

使用max-pooling(with dropout )的特征向量,我们可以通过执行矩阵乘法并选择具有最高分数的类来生成预测。 也可以应用softmax函数将原始分数转换为归一化概率。这里,tf.nn.xw_plus_b是执行Wx + b矩阵乘法。
2、训练文件
1.固定参数设置

# Parameters
====================================
# Data loading params
#10% of database is used to do verification 
tf.flags.DEFINE_float("dev_sample_percentage", .1, "Percentage of the training data to use for validation")
tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")
tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")

# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")

# Training parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")

FLAGS = tf.flags.FLAGS

flag函数定义传参的方式值得借鉴
2.训练数据测试数据处理过程

def preprocess():
    # Data Preparation
    # ==================================================

    # Load data
    print("Loading data...")
    x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)

    # Build vocabulary
    max_document_length = max([len(x.split(" ")) for x in x_text])
    vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
    x = np.array(list(vocab_processor.fit_transform(x_text)))

    # Randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # Split train/test set
    # TODO: This is very crude, should use cross-validation
    dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))
    x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
    y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]

    del x, y, x_shuffled, y_shuffled

    print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
    print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
    return x_train, y_train, vocab_processor, x_dev, y_dev

这里训练集和数据集的比例是9:1,此外对于数据集小的可以采用K折交叉验证(参看sklearn函数)
tensorflow的训练结构是常见形式,作者还加了summary模块,用于tensorboard进行可视化显示

grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
            print("Writing to {}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)

将最终训练好的模型存成.ckpt文件
3、测试文件
word2vec 词袋化,这块不是很懂,以后遇见再补。

# Map data into vocabulary
# 词向量存放路径并取出,词向量就是打开模型这台车的钥匙
vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
# 测试语料,写入一个array,依次串行写入
x_test = np.array(list(vocab_processor.transform(x_raw)))

参考链接:
[1] 作者解读
[2] 其他解读
[3] 卷积神经网络CNN在自然语言处理中的应用
[4] N-Gram模型详解
[5] 词向量及Word2vec的理解
[6] code分析参考

你可能感兴趣的:(NLP应用一:卷积网络有监督文本分类(论文+code))