第二篇随笔
9102年11月底,工科男曹**要算一个方程f(x)=0的根,其中f(x)表达式为:
因为实数范围内f(x)=0的根太多,所以本文只研究-2 这个式子更丑,但是,我们有牛顿迭代法,可以构造迭代序列{xn}满足: 其中f'(xn)不等于0.可以证明,只要初值选的好,序列可以收敛到要求的根.然后就可以写程序求根了. 先上函数图像(由desmos绘制),看到指定区间上有5个零点.然后,零点附近取值吧. 再上效果 结果还是不错的. 最后,上代码.f(x)和f'(x)用委托的方式传入calc函数.委托注意实例化 calc的参数中f和fd分别是指向f(x)和f'(x)的函数指针,x0为初值,eps为精度,cnt为迭代次数 用传引用的方式,通过sol返回计算结果. 返回True为没有出错,False为出错. Public Delegate Function myfunc(x As Double) As Double
Public Function func0(x As Double) As Double
Return Exp(x) + Pow(x, 4) * Sin(Pow(x, 3))
End Function
Public Function func0derive(x As Double) As Double
Return Exp(x) + 4 * Pow(x, 3) * Sin(Pow(x, 3)) + 3 * Pow(x, 6) * Cos(Pow(x, 3))
End Function
Dim f0 As New myfunc(AddressOf func0)
Dim fd0 As New myfunc(AddressOf func0derive)
1 Public Function Calc(f As myfunc, fd As myfunc, x0 As Double, eps As Double, cnt As Integer, ByRef sol As Double) As Boolean
2 If cnt <= 0 Or f Is Nothing Or fd Is Nothing Then
3 Return False
4 End If
5 Try
6 sol = 0
7 Dim x As Double = x0, c0 As Integer = 0
8 While Math.Abs(x) > eps And cnt > c0
9 x = x - f(x) / fd(x)
10 c0 += 1
11 End While
12 sol = x
13 Return True
14 Catch ex As Exception
15 Return False
16 End Try
17 End Function