Netty 异步模型

简介

  1. Netty中的 I/O 操作是异步的, 包括 Bind、Write、Connect 等操作会简单的返回一个ChannelFuture。
  2. 调用者不能立刻获得结果, 而是通过Future-Listener 机制, 用户可以方便的主动获取或者通过通知机制获得IO操作结果。
  3. Netty的异步模型是建立在future和callback之上的。callback就是回调。
  4. Future的核心思想是: 假设一个方法func(), 其计算过程可能很耗时, 等待func()返回不合适。那么就可以在调用func()的时候, 立马返回一个Future, 后续可以通过Future去监控方法func()的处理过程(即: Future-Listener机制)

Future说明

  1. 表示异步的结果, 可以通过它提供的方法来检测执行是否完成, 比如检索计算等。
  2. ChannelFuture是一个继承了Future类的接口, public interface ChannelFuture extends Future {}。可以添加监听器, 当监听的事件发生时, 就会通知到监听器。

ChannelFuture类注释

/**
 * The result of an asynchronous {@link Channel} I/O operation.
 * 异步I/O操作的执行结果
 * 

* All I/O operations in Netty are asynchronous. * Netty中的所有 I/O操作都是异步的 * It means any I/O calls will return immediately with no guarantee that the * requested I/O operation has been completed at the end of the call. * 这意味着 任意 I/O 调用都会直接返回, 但是不能保证请求的I/O 操作在被调用前能够完成。 * * Instead, you will be returned with a {@link ChannelFuture} instance which gives * you the information about the result or status of the I/O operation. * 但是, 会有一个能提供该I/O操作的结果或状态的ChannelFuture类实例被返回。 *

* * A {@link ChannelFuture} is either uncompleted or completed. * channelFuture的状态可以是未完成的也可以是完成的。 * * When an I/O operation begins, a new future object is created. * 当一个 I/O 操作开始, 一个新的对象被创建。 * * The new future is uncompleted initially - it is neither succeeded, failed, nor * cancelled because the I/O operation is not finished yet. * 新的future一开始是未完成状态, 它不是成功的, 失败的, 或取消的, 因为 I/O 操作并没有完成。 * * If the I/O operation is finished either successfully, with failure, or by * cancellation, the future is marked as completed with more specific information, * such as the cause of the failure. * 如果 I/O 操作是成功完成的, 失败的 或是 被取消状态, future就被标记为带有特定信息的完成状 * 态, 比如导致失败的原因。 * * Please note that even failure and cancellation belong to the completed state. * 请记住, 即使是 失败 和 取消 都是完成状态 *

 *                                      +---------------------------+
 *                                      | Completed successfully    |
 *                                      +---------------------------+
 *                                 +---->      isDone() = true      |
 * +--------------------------+    |    |   isSuccess() = true      |
 * |        Uncompleted       |    |    +===========================+
 * +--------------------------+    |    | Completed with failure    |
 * |      isDone() = false    |    |    +---------------------------+
 * |   isSuccess() = false    |----+---->      isDone() = true      |
 * | isCancelled() = false    |    |    |       cause() = non-null  |
 * |       cause() = null     |    |    +===========================+
 * +--------------------------+    |    | Completed by cancellation |
 *                                 |    +---------------------------+
 *                                 +---->      isDone() = true      |
 *                                      | isCancelled() = true      |
 *                                      +---------------------------+
 * 
* * Various methods are provided to let you check if the I/O operation has been * completed, wait for the completion, and retrieve the result of the I/O * operation. * 有许多方法提供给你来检查 此I/O 操作是否完成, 在等待完成, 并取回 I/O 操作的结果。 * It also allows you to add {@link ChannelFutureListener}s so you * can get notified when the I/O operation is completed. * 它还允许你添加 ChannelFuture监听器, 所以你能够在I/O 操作完成时被通知。 * *

Prefer {@link #addListener(GenericFutureListener)} to {@link #await()}

* * It is recommended to prefer {@link #addListener(GenericFutureListener)} to * {@link #await()} wherever possible to get notified when an I/O operation is * done and to do any follow-up tasks. * 当一个 I/O 操作被完成 并且 有接下来的任务要做时, 推荐使用 addListener(添加监听器)而不是 * await() 方法, 因为使用监听器的方式可以被通知。 *

* {@link #addListener(GenericFutureListener)} is non-blocking. * addListener 方法是非阻塞的 * * It simply adds the specified {@link ChannelFutureListener} to the {@link * ChannelFuture}, and I/O thread will notify the listeners when the I/O operation * associated with the future is done. * 它仅仅添加了特定的ChannelFutureListener到ChannelFuture中, 并且 I/O 线程会在 与future * 相关联的 I/O 操作完成时通知监听器。 * * {@link ChannelFutureListener} yields the best performance and resource * utilization because it does not block at all, but it could be tricky to implement * a sequential logic if you are not used to event-driven programming. * 由于本身不阻塞, ChannelFutureListener(监听器) 能提供最好的效用 和 最好的资源利用率, 但 * 是如果内没有习惯于事件启动编程模型, 实现一系列逻辑时可能会比较tricky。 * *

* By contrast, {@link #await()} is a blocking operation. * 相比较之下, await() 方法是一个阻塞操作。 * Once called, the caller thread blocks until the operation is done. * 一旦被调用, 在操作结束之前, 调用者线程会一直阻塞。 * It is easier to implement a sequential logic with {@link #await()}, but the * caller thread blocks unnecessarily until the I/O operation is done and there's * relatively expensive cost of inter-thread notification. * 以await() 方法实现一系列的逻辑会相对简单, 但是调用者线程在I/O操作间有不必要的阻塞 以及 * 线程内部通信代价很高。 * Moreover, there's a chance of dead lock in a particular circumstance, which is * described below. * 此外, 在特殊情况下, 还有可能会产生死锁, 描述如下。 * *

Do not call {@link #await()} inside {@link ChannelHandler}

* 不要在 ChannelHandler 中调用 await() 方法 *

* The event handler methods in {@link ChannelHandler} are usually called by * an I/O thread. * ChannelHandler中的事件处理方法通常是由 I/O 线程调用的。 * * If {@link #await()} is called by an event handler method, which is called by the * I/O thread, the I/O operation it is waiting for might never complete because * {@link #await()} can block the I/O operation it is waiting for, which is a dead * lock. * 如果 await() 方法是被一个事件处理方法以 I/O 线程的形式调用的, 该 I/O 操作会因为await() * 方法阻塞了此 正在被等待的 I/O 操作, 从而导致死锁。 *

 * // BAD - NEVER DO THIS 千万别做以下操作
 * {@code @Override}
 * public void channelRead({@link ChannelHandlerContext} ctx, Object msg) {
 *     {@link ChannelFuture} future = ctx.channel().close();
 *     future.awaitUninterruptibly();
 *     // Perform post-closure operation
 *     // ...
 * }
 *
 * // GOOD 好的操作
 * {@code @Override}
 * public void channelRead({@link ChannelHandlerContext} ctx, Object msg) {
 *     {@link ChannelFuture} future = ctx.channel().close();
 *     future.addListener(new {@link ChannelFutureListener}() {
 *         public void operationComplete({@link ChannelFuture} future) {
 *             // Perform post-closure operation
 *             // ...
 *         }
 *     });
 * }
 * 
*

* In spite of the disadvantages mentioned above, there are certainly the cases * where it is more convenient to call {@link #await()}. * 尽管await()方法的缺点已经在上列出, 还是肯定会有使用它跟方便的情况 * In such a case, please make sure you do not call {@link #await()} in an I/O * thread. * 在此情况下, 请确保你没有在I/O线程中调用await() * Otherwise, {@link BlockingOperationException} will be raised to prevent a dead * lock. * 此外 BlockingOperationException(阻塞操作异常) 会被抛出来预防死锁 * *

Do not confuse I/O timeout and await timeout

* 不要将 I/O 超时 和 await 超时 弄混 * * The timeout value you specify with {@link #await(long)}, * {@link #await(long, TimeUnit)}, {@link #awaitUninterruptibly(long)}, or * {@link #awaitUninterruptibly(long, TimeUnit)} are not related with I/O * timeout at all. * 你使用 await(long), await(long, TimeUnit), awaitUninterruptibly(long) 或 * awaitUninterruptibly(long, TimeUnit)方法时的延时与 I/O 延迟无关。 * * If an I/O operation times out, the future will be marked as * 'completed with failure,' as depicted in the diagram above. * 如果 I/O 操作延时, 该future 会被标记为 完成且失败, 就像途中描述的那样。 * * For example, connect timeout should be configured via a transport-specific * option: * 比如, 连接事件应当通过特定的传输选项配置 *
 * // BAD - NEVER DO THIS 不要做以下操作
 * {@link Bootstrap} b = ...;
 * {@link ChannelFuture} f = b.connect(...);
 * f.awaitUninterruptibly(10, TimeUnit.SECONDS);
 * if (f.isCancelled()) {
 *     // Connection attempt cancelled by user
 *     // 连接请求被用户取消    
 * } else if (!f.isSuccess()) {
 *     // You might get a NullPointerException here because the future
 *     // might not be completed yet.
 *     // 你可能会得到一个空指针, 因为该future没有被完成。   
 *     f.cause().printStackTrace();
 * } else {
 *     // Connection established successfully
 *     // 连接建立成功   
 * }
 *
 * // GOOD 好的操作
 * {@link Bootstrap} b = ...;
 * // Configure the connect timeout option.
 * b.option({@link ChannelOption}.CONNECT_TIMEOUT_MILLIS, 10000);
 * {@link ChannelFuture} f = b.connect(...);
 * f.awaitUninterruptibly();
 *
 * // Now we are sure the future is completed.
 * // 此时我们可以确认该future已完成
 * assert f.isDone();
 *
 * if (f.isCancelled()) {
 *     // Connection attempt cancelled by user
 *     // 连接请求被用户取消  
 * } else if (!f.isSuccess()) {
 *     f.cause().printStackTrace();
 * } else {
 *     // Connection established successfully
 *     // 成功建立连接  
 * }
 * 
*/

工作原理示意图

Netty 异步模型_第1张图片

  • inBound: 入栈
  • outBound: 出栈
  • 说明:
    1. 在使用Netty进行编程时, 拦截操作和转换出入栈数据只需要提供callback 或 利用future即可。
    2. 这使得链式操作简单、高效, 并有利于编写可重用的、通用的代码。
    3. Netty 框架的目标就是让你的业务逻辑从网络基础应用编码中分离出来。

Netty 异步模型_第2张图片

Future-Listener机制

  1. 当Future对象刚刚创建时, 处于非完成状态, 调用者可以通过返回的ChannelFuture来获取操作执行的状态, 注册监听函数来执行完成后的操作。
  2. 常见操作
    • 通过 isDone 方法来判断当前操作是否完成;
    • 通过 isSuccess 方法来判断已完成的当前操作是否成功;
    • 通过 getCause 方法来获取已完成的当前操作失败的原因;
    • 通过 isCancelled 方法来判断已完成的当前操作是否被取消;
    • 通过 addListener 方法来注册监听器, 当操作已完成(isDone 方法返回完成), 将会通知指定的监听器; 如果 Future 对象已完成, 则通知指定的监听器

你可能感兴趣的:(Netty 异步模型)